class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
int p1 =0,p2=0;
int sorted[m+n];//声明一个m+n大小的数组
int cur;
while (p1<m||p2<n){
if(p1==m){//先判断边界条件
cur=nums2[p2++];
}
else if(p2==n){
cur=nums1[p1++];
}
else if(nums1[p1]<nums2[p2])
{
cur=nums2[p2++];
}
else if (nums1[p1]>nums2[p2]){
cur=nums2[p2++];
}
else {
cur=nums2[p2++];
}
sorted[p1+p2-1]=cur;
}
for(int i=0;i!=m+n;++i)
{
nums1[i]=sorted[i];//将整理好的sorted数组覆盖nums1
}
}
};
首先设置两个整形变量p1、p2,然后声明一个暂时用于存放排序的数组sorted[m+n],中间变量cur
当数组下标p1、p2大于自己所指向的数组时退出循环;
循环首先判断边界条件;之后判断两个数组的大小,将小的数组的值存放到中间数组sorted;当一个数组都存放完毕后,就只存放另一个数组了
最后将中间数组sorted复制到数组一nums1中去
复杂度分析
时间复杂度:O((m+n)\log(m+n))O((m+n)log(m+n))。
排序序列长度为 m+nm+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)\log(m+n))O((m+n)log(m+n))。空间复杂度:O(\log(m+n))O(log(m+n))。
排序序列长度为 m+nm+n,套用快速排序的空间复杂度即可,平均情况为 O(\log(m+n))O(log(m+n))。
class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
int p1=m-1,p2=n-1;
int tail=m+n-1;//用于指向第一个数组尾部
int cur;
while (p1>=0||p2>=0)
{
if(p1==-1){//边界条件判断
cur=nums2[p2--];
}
else if(p2==-1){
cur=nums1[p1--];
}
else if(nums1[p1]>nums2[p2])
{
cur=nums1[p1--];
}
else{
cur=nums2[p2--];
}
nums1[tail--]=cur;
}
}
};
尾指针法
将数组一和数组二的数据从数据最后进行判断,大的存放到数组一的尾部,同时指向尾部的存放数据的两个指针/数据下标左移
思考 为什么是尾指针法?
如果是头指针法将小的数据存放到数组一中的第一个位置有可能会覆盖数组一中的原有数据,而尾指针插入法前n个数据插入的地方是没有数据的,不会造成数据 的覆盖。
复杂度分析
时间复杂度:O(m+n)O(m+n)。
指针移动单调递减,最多移动 m+nm+n 次,因此时间复杂度为 O(m+n)O(m+n)。空间复杂度:O(1)O(1)。
直接对数组 nums 1
原地修改,不需要额外空间。