LeetCode | C++ 动态规划——01 背包理论代码,应用:416.分割等和子集

52 篇文章 0 订阅

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

暴力解法:

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是 o(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

1、二维dp数组01背包

请添加图片描述
对照着上表,更容易理解。

dp[i] [j]:

表示从下标为 [0 - i] 的物品里任意取,放进容量为 j 的背包,价值总和最大是多少。

递推公式:

  • 不放物品i:由dp[i - 1] [j]推出,即背包容量为j,里面不放物品 i 的最大价值,此时dp[i] [j]就是dp[i - 1] [j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1] [j - weight[i]]推出,dp[i - 1] [j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1] [j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i] [j] = max(dp[i - 1] [j], dp[i - 1] [j - weight[i]] + value[i]);

dp 数组初始化

首先从dp[i] [j]的定义出发,如果背包容量 j 为 0 的话,即dp[i] [0],无论是选取哪些物品,背包价值总和一定为 0

根据递推公式,当 i 为 0 的时候需要初始化

dp[0] [j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0] [j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0] [j] 应该是value[0],因为背包容量放足够放编号0物品。

从原理上来分析下,其他非零下标应该初始化为多少,从递推公式可以得出,非零下标元素,只是由它的左上方和正上方的元素推导而来,所以初始化成任何元素都可以,不会影响求 dp[i] [j] 的值

遍历顺序

遍历维度:物品与背包重量, 其实两者都可以,但是先遍历物品更好理解。

先遍历物品,还是先遍历背包重量,虽然两个for循环遍历的次序不同,但是dp[i] [j]所需要的数据就是左上角,根本不影响dp[i] [j]公式的推导!

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

代码

void test_2_wei_bag_problem1() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagweight = 4;

    // 二维数组
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    // weight数组的大小 就是物品个数
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

        }
    }

    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() {
    test_2_wei_bag_problem1();
}

2、一维dp数组(滚动数组)

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i] [j] = max(dp[i - 1] [j], dp[i - 1] [j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i] [j] = max(dp[i] [j], dp[i] [j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

dp数组定义:

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

递推公式:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

其实相对于 二维dp数组来说,就是把dp[i] [j] 中的 i 维度去掉了。

dp数组初始化:

dp[0] = 0;

当下标非0时,根据递推公式,为了避免初始化的值过大,而覆盖掉原本计算的值,所以将其初始化为非负数里面的最小值即可。 所以统一 将dp数组初始化为 0

初始化0 的情况 也把 物品0 的情况包含了。

遍历顺序:

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

说白了,当前dp[i] 要使用上一层左侧的dp值,正序会覆盖掉上一层左侧的dp值,倒序避免了覆盖

二维数组利用的是左上和正上方的数据,转换为一维数组后,就要利用左边的数据,如果正序遍历就会覆盖左边的数据,所以得倒着来。

只能先遍历物品嵌套遍历背包容量, 因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品(这个写下代码自己推下就可以理解)。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

代码

void test_1_wei_bag_problem() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    // 初始化
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}

int main() {
    test_1_wei_bag_problem();
}

3、应用——416.分割等和子集

416题目链接
本题是 01背包的应用类题目

明确以下四点,将01背包问题套到本题上:

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值,即nums 既是 weight 也是 value。
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

dp[j]

表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。

递推公式

01背包 一维dp 数组
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

dp 数组初始化

一维dp 一般全部初始化为 0 ;如果题目给的价值有负数,那么非 0 下标需要初始化为 负无穷,以避免覆盖掉 计算得到的 最大价值。

遍历顺序:

一维dp 先物品后背包,遍历背包时,倒序遍历

代码

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;
        for (int i : nums) {
            sum += i;
        }
        if (sum % 2 != 0) return false;
        else sum = sum / 2;

        vector<int> dp(sum + 1, 0);
        for (int i = 0; i < nums.size(); i++) {
            for (int j = sum; j >= nums[i]; j--) {
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        if (dp[sum] == sum) return true;
        else return false;
    }
};

参考

代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值