【leetcode】01背包总结(2024/2/2更新)

本文内容参考了代码随想录,并进行了自己的总结。

01 背包

在这里插入图片描述
这篇文章先总结01背包,完全背包见下一篇文章。

关键点

  • 每件物品只有两种状态:不选、选 1 件

代码

int N, W; // N件物品,容量为W
int w[N], v[N]; // w为大小,v为容量

/* 数组定义 */
int[][] dp = new int[N][W + 1]; // 注意是W + 1, 因为重量会取到W
dp[i][j]; // 从下标为[0, i]的物品中选若干件物品(注意是若干件,不是全部),放入大小为j的容器时的最大价值

/* 递推公式 */
// 由于每件物品有选、不选两种状态,所以两种状态取最大值即可
// 比如,对于dp[i][j]来说,
// 如果不选下标为i的物品,那么价值 = dp[i - 1][j];
// 如果选下标为i的物品,那么价值 = dp[i - 1][j - w[i]] + v[i]
// 两种状态取max
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);

/* 初始化 */
// 从递推公式可以看出来,会存在dp[0][j]、dp[i][0]
// 对于dp[0][j]来说,回到数组定义,即选择下标为0的物品,放入大小为j的容器时的最大价值
// 这里又分两种情况,下标为0的物品的大小w[0]比j大,即放不进去,那么dp[0][j]=0;w[0]比j小,即放的进去,那么dp[0][j]=v[0]
// 对于dp[i][0]来说,回到数组定义,即从下标为[0, i]的物品中选若干件物品,放入大小为0的容器时的最大价值
// 显然dp[i][0] = 0
for(int i = 0; i < N; i ++ ) dp[i][0] = 0;
for(int j = 0; j <= W; j ++ ) {
	if (j >= w[0]) dp[0][j] = v[0];
    else dp[0][j] = 0;
}

/* 求解 */
// 先遍历物品、再遍历大小
// 由于dp[0]j]已经初始化过了,所以从第1件物品开始循环
// 由于dp[i][0]已经初始化过了,所以从重量为1开始循环
for(int i = 1; i < N; i ++ )
	for(int j = 1; j <= W; j ++ ) {
    	if (j < w[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i];
    }

/* 输出答案 */
// dp[N - 1][W]: 即从[0, N-1]中选若干件物品,放入大小为W的容器时的最大价值
return dp[N - 1][W]; 

时间复杂度:O(NW)
空间复杂度:O(NW)

优化:滚动数组,二维空间 -> 一维空间

递推公式

滚动数组思想:
回到递推公式:
d p [ i ] [ j ] = M a t h . m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w [ i ] ] + v [ i ] ) dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]) dp[i][j]=Math.max(dp[i1][j],dp[i1][jw[i]]+v[i])

可以看出,第一维只用到了相邻两层的一个状态,没有第三个状态了。那实际上这个维度就可以去掉了,相当于用一个变量表示两个状态,赋值前就是上一层的状态,赋值后就是下一层的状态!
所以递推公式变成:
d p [ j ] = M a t h . m a x ( d p [ j ] , d p [ j − w [ i ] ] + v [ i ] ) dp[j]=Math.max(dp[j],dp[j-w[i]]+v[i]) dp[j]=Math.max(dp[j],dp[jw[i]]+v[i])

容量 W 遍历方向

对于遍历方向也需要改。如下图所示:

可以看出,后面的状态是用到了前面的状态的。如果还是像二维一样从左往右遍历的话,会出现这种情况:dp[j-w[i]] 被物品 i 更新了,dp[j] 也被物品 i 更新了。由于 dp[j] 是由 dp[j-w[i]] 更新过来的,相当于在重量为 j 的容器里放了两次物品 i,这和 01 背包的题目含义就冲突了:每件物品只有选和不选两种状态。
所以就要保证 dp[j] 用到的 dp[j-w[i]] 是没有被更新过的。方法也容易,反过来遍历就可以了。

初始化

一维的初始化实际上就是初始化一个物品都没用到时的价值。显然,对于任何重量的容器,不放物品,价值就是 0。初始化代码:

for(int j = 0; j <= W; j ++ ) dp[j] = 0;

容量 W 和物品 N 的遍历顺序

对于二维的形式,两种遍历方式都可以,因为不管怎么样,dp[i][j] 都是被左上角的状态更新的,所以先更新左上角的哪一个,实际上都一样。但是对于一维的形式,情况就不一样了。详细看一下两种方法的遍历的含义:

  1. 先遍历容量 W,再遍历物品 N:(×)
for(int j = W; j >=0; j -- )
	for(int i = 0; i < N; i ++ ) {
    	if (j >= w[i]) dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);
    }

这种方法,相当于是对于同一个重量 j,从 N 个物品中选 1 个,看哪个价值最大。那最后 dp[W] 表示的就是从 N 个物品中选 1 个物品时的最大价值,这显然与 01 背包的题目含义冲突了:从 N 个物品中选若干个物品时(每个物品只选一次)的最大价值。
进一步分析,为什么这种方法每次都只会用到一个物品?因为每次递推用到的 dp[j-w[i]] 都是 0,因为 j 是从大到小遍历的,递推公式相当于变成了 dp[j]=Math.max(dp[j], v[i]),那不就是 N 个物品取最大值吗?所以也进一步加深了对一维递推公式的理解:要利用一维的递推,dp[j-w[i]] 一定要叠加了前面选了物品的状态。

  1. 先遍历物品 N,再遍历容量 W:(√)
for(int i = 0; i < N; i ++ )
	for(int j = W; j >=0; j -- ) {
    	if (j >= w[i]) dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);
    }

这种方法,是先考虑前面物品的使用情况,放到 dp 中去,然后再开始考虑下一件物品。所以这种方法中,dp[j - w[i]] 是叠加了前面选了若干件物品之后的状态的。
因此,应该选择第二种遍历顺序。

时空复杂度

时间复杂度:O(NW)
空间复杂度:O(W),空间上比二维少了一个数量级

完整代码

int N, W; // N件物品,容量为W
int w[N], v[N]; // w为大小,v为容量

/* 数组定义 */
int[] dp = new int[W + 1]; // 注意是W + 1, 因为重量会取到W
dp[j]; // 大小为j的容器时的最大价值

/* 递推公式 */
dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);

/* 初始化 */
for(int j = 0; j <= W; j ++ ) dp[j] = 0;

/* 求解 */
// 每迭代一次i,dp就多叠加了一件物品的状态
for(int i = 0; i < N; i ++ )
	for(int j = W; j >= 0; j -- ) {
        if (j >= w[i]) dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);
    }

/* 输出答案 */
// dp[W]: 大小为W的容器时的最大价值
return dp[W]; 

题目

问能装的最大容量,或者问能不能装满的这种题目,属性既是重量又是价值。

下面是代码随想录中,01背包问题的总结。

题目问题转换属性拆解
416. 分割等和子集

01 背包
求最大容量
选一堆数出来,让它们的和等于 sum / 2。

将若干个数放入大小为sum / 2的背包,问背包是否能装满?进一步,问背包能装的最大容量是否和背包容量相同?
背包容量:sum / 2。
物品体积:由于是选若干个数出来让他们的和等于 sum /2,所以物品的大小(体积)就是数的数值大小。
物品价值:这一题没有价值这个维度,只是问背包能装的最大容量。那其实就可以把数值大小看成价值。能不能装满,其实就是最后的最大价值和背包容量是否相等。
物品数量:每个数字只能选择一次。
1049. 最后一块石头的重量 II

01 背包
求最大容量
将石头分成尽可能重量相等的两堆,这样他们之间两两粉碎,就可以使得重量差值最小,所以最后剩下的石头重量也就最小。

将若干个数放入容量为 sum / 2 下取整的背包中,问总重量 - 能放的最大重量为多少?
背包容量:sum / 2。
物品体积:由于是选若干个数出来让他们的和等于 sum /2,所以物品的大小(体积)就是数的数值大小物品体积:石头重量就是体积。
这一题没有价值这个维度,只是问背包能装的最大容量。那其实就可以把石头重量看成价值。
物品数量:每个石头只能选择一次。
494. 目标和

01 背包,二维背包,求最大容量
假设加的和为x(绝对值),则减的和为sum - x,则加 - 减 = target => x - (sum - x) = target => x = (target + sum) / 2。所以,即在n个数中,选若干个数,和为(target + sum) / 2的方案数。

在n个数中,选若干个数,放入大小为(target + sum) / 2的背包,问放满有几种方案?

前提条件:
● target + sum是偶数,否则无解
● abs(target) <= sum,否则无解
背包容量:(target + sum) / 2。
物品体积:数值大小就是体积。
物品价值:这一题没有价值这个维度,只是问背包放满有几种方案。
物品数量:每个数字只能选择一次。
474. 一和零

01 背包
恰好装满,求方案数
这题我认为比较隐蔽,不太能看出来是背包问题。这种题目只能看一个学一个了。题目中“最多有 m 个 0 和 n 个 1”,其实蕴含了背包是个二维背包,容量是 m、n。

从 n 个字符串中选若干个字符串,放入一维体积为 m 二维体积为 n 的背包中,问最大容量是多少?
背包容量:m、n。
物品体积:每个物品有两个维度的体积,字符串中 的 0 就是第一维体积、字符串中的 1 就是第二维体积。
物品价值:同样的,这题问最大容量,所以没有价值的概念,所以把体积看成价值。
物品数量:每个数字只能选择一次。

注意416. 分割等和子集这个题和494. 目标和这个题的关系和区别。前者要判断是否能装满,因为是存在装不满的情况的。而后者是要求装满的方案数。虽然代码中没有明显判断是否能装满,但其实如果装不满的话,方案数就会为 0。

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值