1、np.where()的使用
有两种用法:
- np.where(condition, x, y):当condition为True时,返回x,否则返回y
# 例1, x,y为int值
a = np.arange(10)
# array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(np.where(a > 5, 1, -1))
# array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
"""
例2:x, y也可以是数组,三个维度要相同,根据condition对应位置的bool值选择x和y对应位置的值
"""
np.where([[True,False], [True,True]],
[[1,2], [3,4]],
[[9,8], [7,6]])
# 输出 array([[1, 8], [3, 4]])
- np.where(condition):返回满足condition条件的数组的索引值,多维数组会以元组形式给出。
""" 例1:一维数组 """
a = np.array([2,4,6,8,10])
np.where(a > 5

文章介绍了numpy库中两个重要的函数:np.where()和np.unique()。np.where()函数根据给定条件返回数组元素的值或索引,支持条件三元运算。而np.unique()函数用于找出数组中的唯一元素,并可返回它们在原数组中的索引或计数。文章通过实例展示了这两个函数的使用方法和参数选项。
最低0.47元/天 解锁文章
633

被折叠的 条评论
为什么被折叠?



