霍夫变换(初始学习)

本文探讨了数学中平面直角坐标系的概念,从xy平面出发,通过平移得到ab平面,并指出如何用平面表示直线。讨论了直线的斜率与垂直线的特殊情况,进而引出了参数空间的概念,其中r和θ分别代表原点到直线的距离和与x轴的夹角,为表示直线提供了一种新的数学工具。
摘要由CSDN通过智能技术生成

通常一条直线是用来y=a*x+b 来表示,这时候的平面叫做xy平面。

然后我们对公式做一个平移得到:b = -x*a+y,这时候的平面叫做ab平面。

我们知道,过平面xy上点(x, y)的直线有无数条,即点(x, y)是由无数多个(a_{i}, b_{i})决定的。

由此可以得到平面xy上的一个点是由平面ab上的无数条直线组成的,即可用平面ab来表示直线。

但是由于直线垂直时它的斜率趋近无穷,所以这用平面ab来表示这个直线不太好。

所以引入了参数空间(r, \theta ):    r = xcos\theta +ysin\theta

r表示原点到直线的距离, \theta代表距离与x轴间的夹角。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值