有效的字母异位词【化学中的同分异构体】

目录

一、题目介绍

二、解题思路

三、代码部分


一、题目介绍

题目链接:242. 有效的字母异位词 - 力扣(LeetCode)

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的 字母异位词。

字母异位词:字母异位词是通过重新排列不同单词或短语的字母而形成的单词或短语,并使用所有原字母一次。

示例 1:

输入: s = "anagram", t = "nagaram"
输出: true

示例 2:

输入: s = "rat", t = "car"
输出: false

进阶: 如果输入字符串包含 unicode 字符怎么办?你能否调整你的解法来应对这种情况?

二、解题思路

数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。

如果对哈希表的理论基础关于数组,set,map不了解的话可以看这篇:关于哈希表,你该了解这些!(opens new window)

需要定义一个多大的数组呢,定一个数组叫做record,大小为26 就可以了,初始化为0,因为字符a到字符z的ASCII也是26个连续的数值。

为了方便举例,判断一下字符串s= "aee", t = "eae"。

操作动画如下:

定义一个数组叫做record用来上记录字符串s里字符出现的次数。

需要把字符映射到数组也就是哈希表的索引下标上,因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。

再遍历 字符串s的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串s中字符出现的次数,统计出来了。

那看一下如何检查字符串t中是否出现了这些字符,同样在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。

那么最后检查一下,record数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。

最后如果record数组所有元素都为零0,说明字符串s和t是字母异位词,return true。

时间复杂度为O(n),空间上因为定义了一个常量大小的辅助数组,所以空间复杂度为O(1)。

三、代码部分

// 有效的字母异位词
#include<iostream>
#include<string>

// 判断是否为字母异位词
bool isAnagram(std::string s,std::string t){
    int hash[26]={0}; // 题目中说只针对小写字母 a-z,因此我们可以设置数组的长度为26 
    // 遍历字符串s中各字符出现的频率
    for(int i=0;i<s.size();i++){
        hash[s[i]-'a']++;
    }

    for(int j=0;j<t.size();j++){
        hash[t[j]-'a']--;
    }
    // 遍历hash中的元素是否都为0,如果都为0,说明s与t是字母异位词
    for(int k=0;k<26;k++){
        if(hash[k]!=0){
            return false;
        }
    }
    return true; 

}

int main(){
    int hash[26]={0};
    std::string s = "abbc";
    std::string t = "bbac";
    bool result = isAnagram(s,t);
    if(result==true){
        std::cout<<"s与t是字母异位词!"<<std::endl;
    }
    else{
        std::cout<<"s与t不是字母异位词!"<<std::endl;
    }
    return 0;
}


  • 时间复杂度: O(n):线性时间复杂度 O(m+n)
  • 空间复杂度: O(1):额外使用了一个大小为 26 的整型数组 hash[26],存储字母频次。额外空间仅为固定大小,与输入字符串的长度无关,因此空间复杂度为 O(1)(常数级)

时间复杂度分析

该算法主要由 三个遍历过程 组成:

  1. 遍历字符串 s:遍历 s 中的每个字符,并更新 hash 数组中的计数。

    • 需要 O(m) 的时间,假设 s 长度为 m。
  2. 遍历字符串 t:遍历 t,对 hash 数组进行减法操作。

    • 需要 O(n) 的时间,假设 t 长度为 n。
  3. 遍历 hash 数组(长度 26)

    • 由于 hash 数组长度固定为 26,所以最多只需要 O(26)=O(1)的时间。

总时间复杂度

O(m)+O(n)+O(1)= O(m + n)

线性时间复杂度 O(m+n)


空间复杂度分析

  • 额外使用了一个大小为 26 的整型数组 hash[26],存储字母频次。
  • 额外空间仅为固定大小,与输入字符串的长度无关,因此空间复杂度为 O(1)(常数级)

总结

  • 时间复杂度:O(m + n),取决于输入字符串的长度。
  • 空间复杂度:O(1),只使用了固定大小的额外数组。

推荐学习视频: 

 学透哈希表,数组使用有技巧!Leetcode:242.有效的字母异位词_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值