- 博客(5)
- 收藏
- 关注
原创 循环神经网络与自然语言处理
例如,构建一个用于情感分析的LSTM模型,我们首先定义网络结构,初始化参数,选择合适的损失函数(如交叉熵损失),然后通过实际数据集进行训练。序列模型是理解和预测数据点序列中的关系的工具,特别适用于时间序列数据如文本和语音。双向RNN利用了未来的信息来改进对当前数据点的理解,特别适用于需要从整个序列动态中学习的应用,如语音识别或实体识别。Word2Vec是理解词嵌入的一个典型例子,其通过上下文预测当前词或通过当前词预测上下文来训练词向量。数据预处理的目的是将原始数据转换为适合机器学习模型的格式。
2024-04-26 21:17:45 1465 1
原创 深度学习视觉应用
风格迁移的核心是定义一个代价函数,它同时考虑内容损失和风格损失。内容损失衡量生成图像和内容图像之间的差异,通常使用预训练的卷积神经网络的中间层特征来计算。风格损失则测量生成图像和风格图像之间的差异,通常使用 Gram 矩阵来表示特征之间的相关性。
2024-04-25 21:04:12 1542
原创 深入理解深度学习:多层感知机、BP算法与性能优化
在深度学习的训练过程中,选择合适的优化算法对于模型性能和训练速度有着决定性的影响。动量法、Adagrad、RMSprop 和 Adam 是目前最常用的几种优化策略,它们通过不同的机制来调整学习率,以适应不同的数据特性和训练动态。动量法借助历史梯度信息加速SGD,并帮助克服优化过程中的振荡和停滞问题。Adagrad 适合处理稀疏数据,因为它对于不常更新的特征增大更新步长。RMSprop 通过引入衰减因子来克服 Adagrad 学习率急剧下降的问题,适合处理非平稳目标。
2024-04-25 20:48:26 1693
原创 卷积神经网络基础
卷积神经网络通过其特殊的网络结构,利用卷积层、池化层和全连接层协同工作,有效地从图像等数据中自动学习有用的特征。从LeNet-5到更复杂的如AlexNet和VGG-16,CNN的发展推动了计算机视觉领域的多项突破,使得机器能够在视觉任务上达到甚至超过人类的表现。各种公开数据集的开放和应用,则进一步加速了这一领域技术的研究和发展。CNN的优化和创新仍在继续,为未来的智能系统奠定了坚实的基础。
2024-04-25 20:33:34 412
原创 二维平面旋转
考虑机器人在局部坐标系中的一个向量 \(\mathbf{v} = [v_x, v_y]^T\),表示机器人前方的方向,其中 \(v_x\) 和 \(v_y\) 分别是机器人在其局部坐标系中 x 轴和 y 轴方向上的投影。这里 \(\theta\) 对应于 `yaw`,而 \(pitch\) 和 \(-roll\) 分别是 \(v_x\) 和 \(v_y\) 的值。在您的例子中,可以假设 \(v_x\) 和 \(v_y\) 是由 `pitch` 和 `roll` 角度在局部坐标系中的表达。
2024-04-16 20:30:44 413
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人