深入理解深度学习:多层感知机、BP算法与性能优化

本文详细介绍了深度学习中的多层感知机结构、激活函数,以及BP算法,特别是误差反向传播。重点讨论了动量法、Adagrad、RMSprop和Adam等性能优化算法,以提升模型训练的效率和结果质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深入理解深度学习:多层感知机、BP算法与性能优化

一、多层感知机(MLP)

多层感知机(MLP)是一种前馈人工神经网络,它包括一个输入层、一个或多个隐藏层以及一个输出层。每层由多个神经元组成,每个神经元与下一层的所有神经元通过权重连接。MLP 使用非线性激活函数,这使得它能够学习非线性模型。

1.1 结构

多层感知机的基本结构由以下几部分组成:

  • 输入层:接收输入数据。
  • 隐藏层:一个或多个隐藏层,每层包含若干神经元。隐藏层的主要作用是提取输入数据中的特征。
  • 输出层:根据任务需求设计,如分类或回归。

1.2 激活函数

激活函数的作用是引入非线性因素,解决线性模型无法解决的问题。常用的激活函数包括:

  • Sigmoid ( σ ( x ) = 1 1 + e − x ) (\sigma(x) = \frac{1}{1 + e^{-x}}) (σ(x)=1+ex1),将输入压缩到0和1之间。
  • Tanh ( tanh ⁡ ( x ) = 2 1 + e − 2 x − 1 (\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 (tanh(x)=1+e2x21),将输入压缩到-1和1之间。
  • ReLU ( R e L U ( x ) = max ⁡ ( 0 , x ) (ReLU(x) = \max(0, x) (ReLU(x)=max(0,x)),提供了简单的非线性,常用于隐藏层。

1.3 前向传播

前向传播是指从输入层到输出层的过程。对于每一层,输出计算公式为:
[ a [ l + 1 ] = g [ l ] ( W [ l ] a [ l ] + b [ l ] ) ] [ a^{[l+1]} = g^{[l]}(W^{[l]}a^{[l]} + b^{[l]}) ] [a[l+1]=g[l](W[l]a[l]+b[l])]
其中, ( a [ l ] ) (a^{[l]}) (a[l])是第(l)层的激活值, ( W [ l ] ) (W^{[l]}) (W[l]) ( b [ l ] ) (b^{[l]}) (b[l])分别是第(l)层的权重和偏置, ( g [ l ] ) (g^{[l]}) (g[l])是激活函数。

二、BP算法(误差反向传播)

BP算法是一种用于训练神经网络的常用方法,主要用于优化网络中的权重和偏置,使得网络的预测误差最小化。

2.1 梯度计算

误差反向传播的关键是计算损失函数对每个参数的偏导数。对于输出层,梯度计算公式为:
[ ∂ L ∂ W [ L ] = 1 m δ [ L ] ( a [ L − 1 ] ) T ] [ \frac{\partial \mathcal{L}}{\partial W^{[L]}} = \frac{1}{m} \delta^{[L]} (a^{[L-1]})^T ] [W[L]

BP多层感知器 源代码 神经网络 tic; %计时开始 clc; %清屏 clear all; %清除所有变量 disp('输入层神经元个数: 16'); %显示输入层神经元个数 input=16; disp('中间层神经元个数: 8'); %显示中间层神经元个数 middle=8; disp('输出层神经元个数: 3'); %显示输出层神经元个数 output=3; disp('输入模式1 2 3及其对应的输出:'); x1=[1;1;1;1;1;0;0;1;1;1;1;1;1;0;0;1]; %x1(16,1) y1=[1;0;0]; %y1(3,1) x2=[0;1;0;0;0;1;0;0;0;1;0;0;0;1;0;0]; %x2(16,1) y2=[0;1;0]; %y2(3,1) x3=[1;1;1;1;1;0;0;1;1;0;0;1;1;1;1;1]; %x3(16,1) y3=[0;0;1]; %y3(3,1) disp('形成一张供调用的样本向量表:'); disp('X_sample向量表:x1,x2,x3'); X_sample=[x1,x2,x3] %x1,x2,x3向量表>>>X(16,3) disp('X_sample向量表:y1,y2,y3'); Y_sample=[y1,y2,y3] %y1,y2,y3向量表>>>Yo(3,3) disp('初始化连接权矩阵:'); disp('显示初始化连接权矩阵v(16,8):v(i,j):v(input,middle):'); v=rands(input,middle); %初始化连接权矩阵v(i,j) :输入层中间层的连接权>>>v(16,8) disp(v); %显示初始化连接权矩阵v(i,j) disp('显示初始化连接权矩阵w(8,3):w(j,k):w(middle,output):'); w=rands(middle,output); %初始化连接权矩阵w(j,t) :中间层输出层的连接权>>>w(8,3) disp(w); %显示初始化连接权矩阵w(j,t) disp('初始化阈值矩阵:'); disp('中间层阈值矩阵th1(8,1):th1(j,1):th1(middle,1):'); th1=rands(middle,1); %初始化中间层阈值矩阵th1 :中间层的阈值>>>th1(8,1) disp(th1); %显示中间层阈值矩阵th1 disp('输出层阈值矩阵th2(3,1):th2(k,1):th2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值