算法日记--十三日日记

本文介绍了博弈论中的两种经典游戏——巴什博奕和尼姆博弈。在巴什博奕中,当石子数量n对(m+1)取模不等于0时,先手玩家有必胜策略。尼姆博弈中,通过异或运算判断局势,非奇异状态可通过特定操作转化为奇异状态,从而赢得游戏。例如,将较大堆数减去较小堆数的异或值,可以将非奇异状态转为奇异状态。掌握这些策略,对于解决类似博弈问题至关重要。
摘要由CSDN通过智能技术生成

今日内容–博弈论

1、巴什博奕
例题:一堆石子,给定石子数量n,和每次最多能取出的石子数量m。
有结论:如果满足n % (m + 1) != 0,则先手必胜,否则先手必败。
例题: [HDU-1846] [HDU-1847]
2、尼姆博弈
有n堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。以三元组为例,(a,b,c)。
如果a ^ b ^ c != 0 即为必胜态。
如果a ^ b ^ c == 0 即为必败态。
我们将必败态时的(a, b, c)成为奇异局势,(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。
但如果我们想要将非奇异局势转换为奇异局势,应该怎么操作呢?
假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

例如:(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。
例题:[HDU-1850]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值