题目描述
描述
假设你有一个数组,其中第 i 个元素是股票在第i天的价格。
你可以买入一次股票和卖出一次股票(并非每天都可以买入或卖出一次,总共只能买入和卖出一次),问能获得的最大收益是多少。
数据范围: 0 \le n \le 10000 , 0 \le val \le 100000≤n≤10000,0≤val≤10000
要求:空间复杂度 O(1)O(1),时间复杂度 O(n)O(n)
示例1
输入:[1,4,2]
返回值:3
示例2
输入:[2,4,1]
返回值:2
示例3
输入:[3,2,1]
返回值:0
动态规划代码
class Solution {
public:
/**
*
* @param prices int整型vector
* @return int整型
*/
int maxProfit(vector<int>& prices) {
// write code here
int minPrice=prices[0];//刚开始初始化最小的价格是第一个元素
int DifferencePrice=0;//初始最大利益是0;
for(int i=1;i<prices.size();i++) //遍历从元素1开始查找差值
{
minPrice=(minPrice-prices[i])>0? prices[i]:minPrice; //这里计算最小价格
DifferencePrice=(prices[i]-minPrice-DifferencePrice)>0?prices[i]-minPrice:DifferencePrice;//当前值与最小值的差值是不是大于设定最大差值,大于就改变;
}
return DifferencePrice;
}
};
我自己写的
class Solution {
public:
/**
*
* @param prices int整型vector
* @return int整型
*/
int maxProfit(vector<int>& prices) {
int minnum=prices[0];
int minidx=0;
int maxnum=prices[0];
int maxidx=0;
int maxmoney=0;
int Difference=0;
for(int i=1;i<prices.size();i++)
{
int diff=prices[i]-minnum;
if(diff>maxmoney)
maxmoney=diff;
if(minnum>prices[i])
{
minnum=prices[i];
minidx=i;
}
if(maxnum<prices[i])
{
maxnum=prices[i];
maxidx=i;
}
if(maxidx>=minidx)
Difference=maxnum-minnum;
if(maxmoney<Difference)
{
maxmoney=Difference;
}
}
return maxmoney;
}
};
这里的逻辑是我刚开始写的…和别人的比较确实繁琐,不理解我的无所谓
我这里是想着找出最大值和最小值,然后相减是不是最大利益值。但是会出现寻找最大的值在前面,最小值在后面的情况,于是添加两个索引变量,当最大值得索引值大于等于最小值得索引才能比较maxmoney。但是这样还不够会出现最大值是0号元素,最小值是后面的,这样单纯的比较索引又导致无法比较,maxmoney一直为0.所以刚开始循环的时候进行当前元素直接和最小值相减比较。
看了别人那个动态规划发现自己是多此一举了…