牛客 买卖股票的最好时机 动态规划

牛客 买卖股票的最好时机 动态规划

题目描述

描述
假设你有一个数组,其中第 i 个元素是股票在第i天的价格。
你可以买入一次股票和卖出一次股票(并非每天都可以买入或卖出一次,总共只能买入和卖出一次),问能获得的最大收益是多少。

数据范围: 0 \le n \le 10000 , 0 \le val \le 100000≤n≤10000,0≤val≤10000
要求:空间复杂度 O(1)O(1),时间复杂度 O(n)O(n)

示例1
输入:[1,4,2]
返回值:3

示例2
输入:[2,4,1]
返回值:2

示例3
输入:[3,2,1]
返回值:0

动态规划代码

class Solution {
public:
    /**
     * 
     * @param prices int整型vector 
     * @return int整型
     */
    int maxProfit(vector<int>& prices) {
        // write code here
        int minPrice=prices[0];//刚开始初始化最小的价格是第一个元素
        int DifferencePrice=0;//初始最大利益是0;
        for(int i=1;i<prices.size();i++)	//遍历从元素1开始查找差值
        {
        	minPrice=(minPrice-prices[i])>0? prices[i]:minPrice;  //这里计算最小价格
        	DifferencePrice=(prices[i]-minPrice-DifferencePrice)>0?prices[i]-minPrice:DifferencePrice;//当前值与最小值的差值是不是大于设定最大差值,大于就改变;
        }
        return DifferencePrice;
    }
};

我自己写的

class Solution {
public:
    /**
     * 
     * @param prices int整型vector 
     * @return int整型
     */
    int maxProfit(vector<int>& prices) {
     	int minnum=prices[0];
        int minidx=0;
        
        int maxnum=prices[0];
        int maxidx=0;
        
        int maxmoney=0;
        int Difference=0;
        for(int i=1;i<prices.size();i++)
        {
            int diff=prices[i]-minnum;
            if(diff>maxmoney)
                maxmoney=diff;
            if(minnum>prices[i])
            {
                minnum=prices[i];
                minidx=i;
            }
            
            if(maxnum<prices[i])
            {
                maxnum=prices[i];
                maxidx=i;
            }
            
            if(maxidx>=minidx)
                Difference=maxnum-minnum;
            if(maxmoney<Difference)
            {
                maxmoney=Difference;
            }
        }
        return maxmoney;
    }
};

这里的逻辑是我刚开始写的…和别人的比较确实繁琐,不理解我的无所谓
我这里是想着找出最大值和最小值,然后相减是不是最大利益值。但是会出现寻找最大的值在前面,最小值在后面的情况,于是添加两个索引变量,当最大值得索引值大于等于最小值得索引才能比较maxmoney。但是这样还不够会出现最大值是0号元素,最小值是后面的,这样单纯的比较索引又导致无法比较,maxmoney一直为0.所以刚开始循环的时候进行当前元素直接和最小值相减比较。
看了别人那个动态规划发现自己是多此一举了…

动态规划在解决删除括号问题时,可以按照以下步骤进行: 1. 首先,我们需要理解题目的需求。题目要求我们删除括号,使得剩下的字符串满足以下条件:左括号和右括号的数量相等,且左括号的位置必须在右括号的前面。 2. 接下来,我们可以使用动态规划来解决这个问题。我们可以定义一个三维的dp数组,其中dp[q][w][e]表示考虑s前q个字符,t前w个字符,且s被删除部分左括号数减去右括号数为e时,是否可行(bool类型)。 3. 然后,我们可以从前向后遍历字符串s和t。在每一步中,我们可以考虑两种情况: a. 删除的左括号数目比右括号:我们可以继续删除左括号,或者删除右括号。即dp[q][w][e] = dp[q-1][w][e+1]或dp[q-1][w][e-1]。 b. 删除的左括号数目与右括号数目相同:我们只能删除右括号。即dp[q][w][e] = dp[q-1][w-1][e-1]。 4. 最后,我们可以根据dp[len1][len2][0]的值来判断是否可行。其中len1和len2分别表示字符串s和t的长度。 综上所述,通过动态规划的思路,我们可以解决删除括号的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [动态规划笔记](https://download.csdn.net/download/weixin_38617297/13751806)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [_21303删括号_动态规划](https://blog.csdn.net/weixin_45619006/article/details/114650172)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值