莫兰指数P值,Z值分析

文章详细解释了P值在假设检验中的作用,指出P值低于特定阈值可表明数据存在空间自相关性。Z得分用于判断空间聚集,而莫兰指数则分析空间正/负相关。当P值小于0.1或0.01时,通常认为存在空间关联;Z值大于1.65或小于-1.65表示聚集或离散分布。此外,文章还提到了AnselinLocalMoransI用于聚类和异常值分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

仔细看完下面两个链接绝对可以明白。写的非常清晰。

白话空间统计之四:P值和Z得分(中)

白话空间统计之四:P值和Z得分(下)

个人理解:P值决定了数据有没有显著性,数据能不能用的问题。z值解决了在空间上是否有聚集的问题。莫兰值解决了再空间上是正/负相关的问题。

他人理解:

p值是假设检验的值。
假设检验的原假设是:研究内容不存在空间自相关性或者说是随机的。
当p<0.1时表示在90%的置信区间上拒绝原假设,当p<0.01时表示在99%的置信区间上拒绝原假设,也就是说,研究内容存在空间自相关性;当p>0.1时,接受原假设,说明研究内容不存在空间自相关性。
z值,z>1.65时呈现聚集分布,z<-1.65时呈现离散分布,z值在-1.65 ~ 1.65之间时,呈现随机分布。(注:这里说的1.65是临界值,只要z值在-1.65 ~ 1.65之间,就可以说明不存在空间自相关性了)
关于moran’s I本身来说,只要p值过了检验,莫兰指数值可以是比较小的,这只能说明具有空间效应。而当moran’s I的值大于0.2或者小于-0.2时,可以说具有明显的空间效应了。

 

 白话空间统计之四:P值和Z得分(中)

p值(P-Value,Probability,Pr),代表的是概率。它是反映某一事件发生的可能性大小。在空间相关性的分析中,p值表示所观测到的空间模式是由某一随机过程创建而成的概率。

arcgis的空间关系概念化选择应该据实际要求进行选择。

 参考虾神的文章。http://t.csdn.cn/kQfi3

 如果你计算出来的p值和z得分,被分布在了两端,就说明你的数据出现随机模式的概率非常低了

​​​​​​fhttp://t.csdn.cn/aLfjv

分析的是否有问题???

白话空间统计十七:聚类和异常值分析(Anselin Local Moran's I)

白话空间统计之四:P值和Z得分(中)

白话空间统计之四:P值和Z得分(下)

白话空间统计番外:再谈莫兰指数(Moran's I)

### 莫兰指数显著但拉格朗日乘数(LM)检验不显著的原因 莫兰指数用于衡量全局空间自相关程度,而拉格朗日乘数(LM)检验则主要用于检测特定形式的空间依赖性并帮助选择合适的空间计量经济学模型。两者虽然都涉及空间效应的评估,但在实际应用中有不同的侧重点和假设条件。 #### 不同的假设与敏感度差异 莫兰指数主要关注观测之间的相似性和聚集模式,能够有效捕捉到数据中存在的任何类型的正向或负向空间关联[^1]。然而,在某些情况下,即使存在明显的整体空间结构,这种结构可能并不符合由SLM或SEM所定义的具体机制。因此,当使用更严格的LM测试来验证这些具体假定时,可能会发现原本通过莫兰I测得的整体趋势不再具有统计学意义。 #### 数据特征的影响 另外,样本量大小、权重矩阵构建方式以及潜在异方差等因素也会影响两种方法的结果一致性。较小规模的数据集可能导致估计不够稳定;不同定义下的邻接关系会改变权重矩阵的形式从而影响最终结论;而在存在未被考虑进去的重要变量时,则容易造成遗漏变量偏差进而干扰对于真实空间过程的理解。 #### 实际案例说明 考虑到上述因素,可以设想这样一个场景:在一个地理区域内观察到了较高的Moran's I表明存在较强的空间集聚现象,但是经过进一步分析后发现在该区域内的经济发展水平受到多种复杂因素共同作用而非单纯地理位置所致。此时尽管总体上呈现出一定的空间依存特性,但由于不符合标准意义上的SLM/SEM设定框架内预期的行为规律,所以在针对这两种模型特性的LM检验中未能达到显著水平。 ```python import pysal as ps from libpysal.weights import W import numpy as np # 假设有一个空间权重矩阵 w 和一个属性数组 y w = W.from_shapefile('path_to_shp_file.shp') y = np.random.rand(len(w)) # 计算 Moran’s I 统计 mi = ps.esda.Moran(y, w) print(f'Moran\'s I Index: {mi.I}') print(f'P-value of Moran\'s I: {mi.p_sim}') # 进行 LM 检验 (这里仅示意) lm_results = some_function_for_lm_test(y, w) # 替换为实际函数调用 if lm_results['lag'] < 0.05 and lm_results['error'] >= 0.05: model_choice = "Spatial Lag Model" elif lm_results['lag'] >= 0.05 and lm_results['error'] < 0.05: model_choice = "Spatial Error Model" else: model_choice = "No clear spatial dependence" print(model_choice) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GGG信

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值