机器学习笔记

epoch

当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次epoch。然而,当一个epoch对于计算机而言太庞大的时候,就需要把它分成多个小块。

Batch Size
batch size将决定我们一次训练的样本数目。注意:batch size 和 number of batches是不同的。

Batch是什么?
在不能将数据一次性通过神经网络的时候,就需要将数据集分成几个batch。

Iteration
Iteration是batch需要完成一个epoch的次数。举个例子:
有一个2000个训练样本的数据集。将2000个样本分成大小为500的batch,那么完成一个epoch需要4个iteration。

为什么要使用多于一个epoch?
在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次。但请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降来优化学习过程。如下图所示。因此仅仅更新一次或者说使用一个epoch是不够的。

随着epoch数量增加,神经网络中的权重的更新次数也在增加,曲线从欠拟合变得过拟合。

 那么,问题来了,几个epoch才是合适的呢?
不幸的是,这个问题并没有正确的答案。对于不同的数据集,答案是不一样的。但是数据的多样性会影响合适的epoch的数量。比如,只有黑色的猫的数据集,以及有各种颜色的猫的数据集。

适当的增加Batch_Size的优点:
1.通过并行化提高内存利用率。

2.单次epoch的迭代次数减少,提高运行速度。(单次epoch=(全部训练样本/batchsize)/iteration=1)

3.适当的增加Batch_Size,梯度下降方向准确度增加,训练震动的幅度减小。(看上图便可知晓)

经验总结:
相对于正常数据集,如果Batch_Size过小,训练数据就会非常难收敛,从而导致underfitting。

增大Batch_Size,相对处理速度加快。

增大Batch_Size,所需内存容量增加(epoch的次数需要增加以达到最好的结果)

这里我们发现上面两个矛盾的问题,因为当epoch增加以后同样也会导致耗时增加从而速度下降。因此我们需要寻找最好的Batch_Size。

再次重申:Batch_Size的正确选择是为了在内存效率和内存容量之间寻找最佳平衡。


————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/program_developer/article/details/78597738

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值