递归算法之整数划分问题

本文探讨了整数划分问题,即如何将正整数n表示为一系列正整数之和。通过分析问题并引入表示方式q(n,m),详细阐述了不同情况下最大加数的计算规则。最后,给出了递归代码实现,并预告了下期的递归算法主题——汉诺塔问题。" 112965014,10540275,Python从国家缩写到全名的转换处理,"['Python编程', '数据处理', '数据整合', 'pycountry库', '国家信息']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

将正整数n表示成一系列正整数之和,
n = n1 + n2 + n3 +…+nk (其中ni为正整数,1<=ni<=n)
举例说明,
n = 4的情况下,共有5种划分情况
4 = 4
4 = 3 + 1
4 = 2 + 2
4 = 2 + 1 + 1
4 = 1 + 1 + 1 + 1
注意:这里的1 + 3 和3 + 1被认为是同一种划分情况。

问题分析

首先引入一个表示方式q(n,m)
它的含义是,在正整数n的划分中,将最大加数不大于m的划分数表示为q(n,m)。
这里根据m的不同取值有以下几种情况出现。

  1. m=1
    q(n,1) = 1,n = n个1相加,只有一种情况。
  2. n> m > 1
    q(n,m) = q(n,m-1) + q(n-m,m)
    q(n-m,m)表示最大加数等于m的情况,q(n,m-1)表示最大加数不大于m-1的情况。
  3. m > n
    q(n,m) = q(n,n)
  4. m = n
    q(n,m) = q(n,n) = 1 + q(n,n-1)

递归代码实现

int 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值