恒源云GPU服务器使用笔记


本人用于指导自己进行yolov5模型的笔记,敬请批评
前期工作和了解

注册账号

——>注册链接

领券

完成新人任务,学生认证,即可获得100+代金券

开实例

开实例,在云市场的代金券专区选适合的实例开启,我选择RTX3090,我选择官方镜像版本:PyTorch / 1.8.1 / 3.8 / 11.1请添加图片描述

进入实例

  1. 启动实例
  2. 打开JupyterLab链接来登陆实例
  3. 打开终端进入实例系统内
    请添加图片描述
    请添加图片描述

文件上传工具使用笔记

第1种:oss命令行工具【传输大文件速度快】

1. 上传文件至中转站

  1. 工具下载
    oss命令行工具——>下载链接

  2. 上传步骤

  3. 把下载好的文件重命名为oss.exe

  4. 双击运行oss.exe

  5. 登录,输入 login,账户名是恒源云注册手机号

  6. 上传压缩文件——>恒源云“数据中转站”的根目录
    命令: cp 压缩文件所在目录\xxx.zip oss://
    例: cp E:\demo1.zip oss://请添加图片描述

从中转站转存—>实例

进入实例后,从恒源云“数据中转站”中下载文件进实例中

  1. 登录,账户名是恒源云注册手机号,输入密码
cd /hy-tmp
oss login  
  1. 下载数据集等文件至当前目录
oss cp oss://xxx.zip .
  1. 解压文件至当前目录
unzip -q xxx.zip

请添加图片描述

第2种:XFTP[传输小文件方便]

【更新】我原来使用的一直是oss工具,但我现在发现xftp传输小文件更方便

  1. 下载链接
  2. 复制登录指令和密码到txt中查看
    密码
  3. 参考官网教程
    1. 打开Xftp图形化客户端,然后文件->新建
    2. 根据复制而来的登录信息,填写下图
      官网图片1
  4. 拖拽,实现上传和下载文件[敲方便!]
    拖拽
    正式工作

1、上传数据集和相关模型文件

2、配置环境

  1. pip换源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
  1. 安装yolov5所需的依赖集
cd ./yolov5-master
pip install -r requirements.txt

请添加图片描述

3. 使用实例训练

进入实例之后,改变路径来到train.py所在文件夹 /yolov5-master

cd  /hy-tmp/yolov5-master

执行训练命令

python train.py --data ./data/demo1.yaml --weights ./weights/yolov5l.pt --cfg ./models/yolov5l.yaml  --imgsz 640  --device 0 --batch-size 32 --epochs 100

请添加图片描述

4. 训练结束后,从实例转存数据

第1种:转存到恒源云“数据中转站”【不占用自己电脑空间】

  1. 执行以下命令,压缩当前目录的数据为xxx.zip文件
zip -r xxx.zip ./* 
  1. 执行以下命令,将xxx.zip转存到恒源云“数据中转站”的根目录中
oss cp xxx.zip oss://

请添加图片描述

注:再转存回实例,请参考上面的oss命令

第2种:下载到自己的电脑

第1种:通过下载链接直接下载到本地,方法如下
1、右键上一步生成的压缩文件xxx.zip
2、复制下载链接
3、粘贴到浏览器直接下载到本地
请添加图片描述
第2种:使用xftp,拖拽文件,实现下载
下载图片

——————

部分参考:链接

### 配置恒源云服务器环境 #### 选择合适的操作系统 在创建恒源云实例时,可以选择适合的操作系统。对于机器学习任务,通常推荐使用Ubuntu LTS版本,因为其稳定性和广泛的社区支持[^1]。 #### 安装必要的依赖库 为了确保YOLOv5能够在环境中顺利运行,安装一些基础的软件包是非常重要的。这可以通过更新现有的包列表并安装Python以及pip来完成: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install python3-pip -y ``` 接着,还需要设置好CUDA和cuDNN环境以便充分利用GPU加速计算能力。具体步骤可以根据NVIDIA官方文档操作或者直接通过Anaconda管理这些依赖关系[^2]。 #### 创建虚拟环境 建议为项目建立独立的Python虚拟环境以隔离不同项目的依赖项冲突问题。可以采用`venv`模块或是更高级别的工具如Conda来进行这项工作: ```bash python3 -m venv yolov5-env source yolov5-env/bin/activate ``` 一旦激活了新的虚拟环境,则可以在其中安全地安装所需的Python包而不会影响系统的其他部分[^4]。 #### YOLOv5特定配置 针对YOLOv5框架本身而言,在克隆仓库之后按照README.md中的指示执行相应的命令即可完成最终的准备工作。特别是要注意检查是否有任何额外的数据集处理脚本需要被执行,比如转换标签格式等。 #### 远程开发准备 如果打算使用IDE进行远程编码的话,除了上述提到的技术栈外,还需特别注意所使用的集成开发环境(IDE)是否具备良好的SSH/SFTP插件支持功能。值得注意的是,并不是所有的IDE都提供这样的特性;例如,只有PyCharm专业版才允许用户轻松实现这一点[^3]。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值