考研数学笔记(更新中)

导数积分分别是处理均匀量的商和积在处理非均匀量中的发展

一、函数、极限、连续

(一)函数

1.题型

​ 函数性质

​ 单调性、奇偶性、周期性、有界性

​ 复合函数

(二)极限

1.知识点
(1)概念

​ 概念:邻域

要分左右求极限的情况

  1. 分界点两侧函数表达式不同

  2. $e^{\infty} \text { 型极限 (如 } \lim _{x \rightarrow 0} e^{\frac{1}{x}}, \lim _{x \rightarrow \infty} e^{x}, \lim _{x \rightarrow \infty} e^{-x} \text { ) }
    $

  3. $\arctan \infty \text { 型极限 (如 } \lim _{x \rightarrow 0} \arctan \frac{1}{x}, \lim _{x \rightarrow \infty} \arctan x \text { ) }
    $

e的定义:
lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e limx(1+x1)x=e

lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim _{x \rightarrow 0}\left(1+x\right)^\frac{1} {x}=e limx0(1+x)x1=e

(2)性质
  1. 有界性
    收 敛 ⇒ 有 界 收敛\Rightarrow有界 ​​(反过来不成立)
    极 限 存 在 ⇒ 局 部 有 界 极限存在\Rightarrow局部有界 ​​​​

  2. 保号性
    (1)如果 A > 0 A>0 A>0​ (或 A < 0 A<0 A<0​ ), 则存在 N > 0 N>0 N>0​, 当 n > N n>N n>N​ 时, 则 x n > 0 x_{n}>0 xn>0​ (或 x n < 0 x_{n}<0 xn<0​ );

    (2)如果存在 N > 0 N>0 N>0​, 当 n > N n>N n>N​ 时, x n ≥ 0 x_{n} \geq 0 xn0​ (或 x n ≤ 0 x_{n} \leq 0 xn0​ ),
    A ≥ 0 A \geq 0 A0​ (或 A ≤ 0 A \leq 0 A0​​ ),

  3. 极限值与无穷小的关系

    lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim f(x)=A \Leftrightarrow f(x)=A+\alpha(x) \quad limf(x)=Af(x)=A+α(x)​其中 lim ⁡ α ( x ) = 0 \quad \lim \alpha(x)=0 limα(x)=0​.

(3)存在准则
  1. 夹逼准则
    若存在 N N N, 当 n > N n>N n>N 时, x n ≤ y n ≤ z n x_{n} \leq y_{n} \leq z_{n} xnynzn, 且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=a limnxn=limnzn=a, 则 lim ⁡ n → ∞ y n = a \lim _{n \rightarrow \infty} y_{n}=a limnyn=a.
  2. 单调有界准则
    单调有界数列必有极限:
    1. 单调增、有上界的数列必有极限
    2. 单调减、有下界的数列必有极限
(4)无穷小

​ 无穷小量

​ 高阶、低阶、同阶、等价无穷小、无穷小的阶

​ 等价无穷小的替换

​ 常见等价无穷小

(5)无穷大

x → + ∞ x \rightarrow+\infty x+
ln ⁡ α x < < x β < < a x {\ln ^{\alpha} x<<x^{\beta}<<a^{x}} lnαx<<xβ<<ax

其中 $\alpha>0, \beta>0, a>1 $​​​

n → ∞ \boldsymbol{n} \rightarrow \infty n
ln ⁡ α n < < n β < < a n < < n ! < < n n {\ln ^{\alpha} \boldsymbol{n}<<\boldsymbol{n}^{\beta}<<\boldsymbol{a}^{n}<<\boldsymbol{n} !<<\boldsymbol{n}^{n}} lnαn<<nβ<<an<<n!<<nn

其中$\alpha>\mathbf{0}, \boldsymbol{\beta}>\mathbf{0}, \boldsymbol{a}>\mathbf{1} $​​​​​​​

无穷大量与无界变量的关系

无穷大量:某一项后所有值都很大

无界变量:某一项的值无穷大

无穷大量 ⇒ \Rightarrow ​​无界变量​​​​

2.题型
  1. 极限的概念性质及存在准则(选择题)
  2. 求极限
  3. 无穷小量阶的比较

数列

常用的求极限方法(8种)
  1. 利用基本极限求极限

    lim ⁡ x → 0 sin ⁡ x x = 1 ; lim ⁡ x → 0 ( 1 + x ) 1 x = e ; lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 ; \quad \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x} }=e ; \quad \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e limx0xsinx=1;limx0(1+x)x1=e;limx(1+x1)x=e

    lim ⁡ x → 0 a x − 1 x = ln ⁡ a ; lim ⁡ n → ∞ n n = 1 ; lim ⁡ n → ∞ a n = 1 ( a > 0 ) \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln a ; \quad \lim _{n \rightarrow \infty} \sqrt[n]{n}=1 ; \quad \lim _{n \rightarrow \infty} \sqrt[n]{a}=1(a>0) limx0xax1=lna;limnnn =1;limnna =1(a>0)​​​

    lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m 0 , n < m ∞ , n > m \lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}=\left\{\begin{array}{cc}\frac{a_{n}}{b_{m}}, & n=m \\ 0, & n<m \\ \infty, & n>m\end{array}\right. limxbmxm+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0=bman,0,,n=mn<mn>m

    x → 0 x\rightarrow0 x0时,比较次数最低的项的系数

    KaTeX parse error: Expected group after '\begin{array}' at end of input: …d{array}\right.

    lim ⁡ n → ∞ e n x = { 0 , x < 0 + ∞ , x > 0 1 , x = 0 \lim _{n\rightarrow \infty} e^{n x}=\left\{\begin{array}{c}0, & x<0 \\ +\infty, &x>0 \\1, &x=0\end{array}\right. limnenx=0,+,1,x<0x>0x=0

    "1"的无穷型极限常见结论

    ​ 若 lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ \lim \alpha(x)=0, \lim \beta(x)=\infty limα(x)=0,limβ(x)=​, 且 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x) \beta(x)=A limα(x)β(x)=A
    ​ 则 lim ⁡ ( 1 + α ( x ) ) β ( x ) = e A \lim (1+\alpha(x))^{\beta(x)}=e^{A} lim(1+α(x))β(x)=eA

    ​ 1)写标准形式 原式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) ; =\lim [1+\alpha(x)]^{\beta(x)}; =lim[1+α(x)]β(x);​​​
    ​ 2)求极限 lim ⁡ α ( x ) β ( x ) = A ; \lim \alpha(x) \beta(x)=A ; limα(x)β(x)=A;​​​
    ​ 3)写结果 原式 = e A =e^{A} =eA​​​​​.

  2. 利用等价无穷小代换求极限

    常见等价无穷小: x → 0 x\rightarrow0 x0时​​​

    x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim e^{x}-1 xsinxtanxarcsinxarctanxln(1+x)ex1

    a x − 1 ∼ x ln ⁡ a , ( 1 + x ) α − 1 ∼ α x , 1 − cos ⁡ x ∼ 1 2 x 2 a^{x}-1 \sim x \ln a, \quad(1+x)^{\alpha}-1 \sim \alpha x, \quad 1-\cos x \sim \frac{1}{2} x^{2} ax1xlna,(1+x)α1αx,1cosx21x2

    x − sin ⁡ x ∼ 1 6 x 3 x-\sin x \sim \frac{1}{6} x^{3} xsinx61x3 tan ⁡ x − x ∼ 1 3 x 3 \tan x-x \sim \frac{1}{3} x^{3} tanxx31x3 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x-\ln (1+x) \sim \frac{1}{2} x^{2} xln(1+x)21x2

    arcsin ⁡ x − x ∼ 1 6 x 3 \arcsin x-x \sim \frac{1}{6} x^{3} arcsinxx61x3 x − arctan ⁡ x ∼ 1 3 x 3 x-\arctan x \sim \frac{1}{3} x^{3} xarctanx31x3

  3. 利用有理运算法则求极限

    极限的加减乘除都适用

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0xnCyDUz-1647691422533)(基础.assets/image-20220209135052387.png)]

    极限、连续、导数、级数相同

  4. 利用洛必达法则求极限

    0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infin}{\infin} 能用

  5. 利用泰勒公式求极限定理

    (泰勒公式) 设 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 n n n 阶可导, 则 (局部泰勒)
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( x − x 0 ) n f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+o\left(x-x_{0}\right)^{n} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+o(xx0)n
    常用泰勒公式

    e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) e^{x}=1+x+\frac{x^{2}}{2 !}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right) ex=1+x+2!x2++n!xn+o(xn)

    sin ⁡ x = x − x 3 3 ! + ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n ) \sin x=x-\frac{x^{3}}{3 !}+\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1) !}+o\left(x^{2 n}\right) sinx=x3!x3++(1)n1(2n1)!x2n1+o(x2n)

    cos ⁡ x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \cos x=1-\frac{x^{2}}{2 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+o\left(x^{2 n}\right) cosx=12!x2++(1)n(2n)!x2n+o(x2n)

    ln ⁡ ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) \ln (1+x)=x-\frac{x^{2}}{2}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right) ln(1+x)=x2x2++(1)n1nxn+o(xn)

    ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}+o\left(x^{n}\right) (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+o(xn)

    高阶用泰勒方便​​

  6. 利用夹逼原理求极限

  7. 利用单调有界准则求极限

    适合题目给出递推的情况

  8. 利用定积分定义求极限(见第五章)

    提可爱因子 1 n \frac{1}{n} n1

    n项和求极限

    1. 夹逼
    2. 定积分定义

(3)连续

二、导数与微分

三、微分中值定理

四、不定积分

五、定积分

六、微分方程

七、多元积分

八、二重积分

九、无穷级数

十、空间解析几何

十一、三重积分及线面积分

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
考研数学三高分笔记pdf是一份非常有价值的学习资料,它主要针对考研数学这一门学科进行了深入的讲解和总结。该笔记的特点是内容系统全面,涵盖了考研数学各个方面的重点和难点,对于学习者来说是一份非常实用的复习资料。 首先,考研数学三高分笔记pdf内容系统全面。它将考研数学的各个知识点有机地组合在一起,从基础知识到高级应用都有详细的讲解。无论是线性代数、概率论与数理统计还是高等数学,都能在笔记找到相应的内容。这使得学习者可以系统地复习整个考研数学知识体系,对各个知识点有一个全面的理解。 其次,该笔记还针对考研数学的重点和难点进行了详细的总结和讲解。在考研数学,有一些知识点往往是难以理解和掌握的,但是对于考研数学的高分是至关重要的。考研数学三高分笔记pdf就针对这些难点进行了深入的解析,通过讲解清晰的例题和技巧,帮助学习者更好地理解和掌握这些知识点。 最后,该笔记以pdf格式呈现,方便学习者进行随时随地的学习学习者可以将笔记下载到电脑、手机等设备,无论在家还是在外,都能随时打开进行学习。这种灵活性使学习者能更好地安排时间和地点,提高学习的效率。 综上所述,考研数学三高分笔记pdf是一份非常有价值的学习资料。它不仅内容系统全面,还针对考研数学的重点和难点进行了详细的解析,通过pdf格式的呈现,方便学习者进行随时随地的学习。对于准备参加考研数学学习者来说,这份笔记是一个不可多得的宝藏。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值