高等数学考研笔记(一)

高等数学考研笔记(一):极限论

  • 数列极限:
    • 定义:对于数列{ a n a_n an},若存在一个常数A,对任意正数 ε \varepsilon ε,总存在正整数N,使得当n>N时总有: ∣ a n − A ∣ < ϵ |a_n - A| < \epsilon anA<ϵ,则称数列{ a n a_n an}收敛于A,并将A称作数列{ a n a_n an}的极限,记作: lim ⁡ n → ∞ a n = A \lim_{n\rightarrow \infty} a_n = A limnan=A
      若数列{ a n a_n an}没有极限,则称{ a n a_n an}发散

    • 数列收敛的充分必要条件:

      • 奇偶子数列极限存在且相等;
      • 柯西准则:数列 { x n } \{x_n\} {xn}收敛的充分必要条件是:对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在 N ∈ N + N\in N_+ NN+,当 m , n > N m,n>N m,n>N时有: ∣ x m − x n ∣ < ϵ |x_m-x_n| < \epsilon xmxn<ϵ
    • 基本性质:

      性质释义
      唯一性若{ a n a_n an}极限存在,则其极限唯一
      有界性若{ a n a_n an}收敛,则{ a n a_n an}为有界数列
      保号性 lim ⁡ n → ∞ a n = A > 0 \lim_{n\rightarrow \infty} a_n = A > 0 limnan=A>0,则对于任意 A ′ ∈ ( 0 , A ) A' \in (0,A) A(0,A),存在正整数 N N N,使得当 n > N n>N n>N时,总有 a n > A ′ a_n > A' an>A A < 0 A<0 A<0的情况同理
      保不等式性设{ a n a_n an},{ b n b_n bn}均为收敛数列,若存在正数N,使得当n>N时总有 a n ≤ b n a_n \leq b_n anbn,则: lim ⁡ n → ∞ a n ≤ lim ⁡ n → ∞ b n \lim_{n\rightarrow \infty} a_n \leq \lim_{n\rightarrow \infty} b_n limnanlimnbn
    • 四则运算:( a n , b n a_n,b_n an,bn均收敛)
      lim ⁡ n → ∞ ( a n + b n ) = lim ⁡ n → ∞ a n + lim ⁡ n → ∞ b n \lim_{n\rightarrow \infty} (a_n+b_n) = \lim_{n\rightarrow \infty} a_n + \lim_{n\rightarrow \infty} b_n limn(an+bn)=limnan+limnbn

      lim ⁡ n → ∞ ( a n × b n ) = lim ⁡ n → ∞ a n × lim ⁡ n → ∞ b n \lim_{n\rightarrow \infty} (a_n\times b_n) = \lim_{n\rightarrow \infty} a_n \times \lim_{n\rightarrow \infty} b_n limn(an×bn)=limnan×limnbn

      lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ a n lim ⁡ n → ∞ b n ( lim ⁡ b n ≠ 0 ) \lim_{n\rightarrow \infty} \frac{a_n}{b_n} = \frac{\lim_{n\rightarrow \infty} a_n }{ \lim_{n\rightarrow \infty} b_n}(\lim b_n \neq 0) limnbnan=limnbnlimnan(limbn=0)

    • 夹逼定理
      a n , b n , c n a_n,b_n,c_n an,bn,cn满足:
      ①存在正整数 N N N,当 n > N n>N n>N时有 a n ≤ b n ≤ c n a_n \leq b_n \leq c_n anbncn
      a n , c n a_n,c_n an,cn极限存在且相等;

      则: b n b_n bn极限存在且与 a n , c n a_n,c_n an,cn极限相等;

    • 单调数列极限存在定理:若单调递增/减数列有上/下界,则其极限必定存在;

    • 若原数列收敛,则任一子列必定收敛于同一极限;

    • 有界数列必有收敛于有限极限的子列;

    • 若存在两个子列不收敛于同一极限,则原数列发散;

    • 数列部分和的极限与无穷限积分的转化:
      lim ⁡ n → ∞ ∑ i = 1 n f ( i n ) 1 n = ∫ 0 1 f ( x ) d x \lim\limits_{n\rightarrow \infty}\sum\limits_{i=1}^n f(\cfrac{i}{n})\cfrac{1}{n} = \int_0^1f(x)dx nlimi=1nf(ni)n1=01f(x)dx

  • 函数极限:
    • 定义:设 f ( x ) f(x) f(x) x 0 x_0 x0的某去心邻域内有定义,若存在常数A,对于任意正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时总有: 0 < ∣ f ( x ) − A ∣ < ε 0<|f(x)-A| < \varepsilon 0<f(x)A<ε,则称A为 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时的极限,记作: lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0} f(x) = A limxx0f(x)=A ⇒ \Rightarrow 当A为无穷时,定义可改写为:设 f ( x ) f(x) f(x) x 0 x_0 x0的某去心邻域内有定义,对于任意正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时总有: f ( x ) > ε f(x) > \varepsilon f(x)>ε,则称 f ( x ) f(x) f(x) x → x 0 x\rightarrow x_0 xx0时发散到正无穷,记作: lim ⁡ x → x 0 f ( x ) = + ∞ \lim_{x\rightarrow x_0} f(x) = +\infty limxx0f(x)=+;(负无穷的情况类似定义)

    • 函数收敛的充要条件:

      • 左右极限都存在且相等;
      • 函数收敛的柯西准则:设函数 f ( x ) f(x) f(x) x 0 x_0 x0的某去心领域 N δ ( x 0 ) N_{\delta}(x_0) Nδ(x0)内有定义, lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x)存在的充要条件为:对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在 δ 1 ( < δ ) > 0 \delta_1(<\delta)>0 δ1(<δ)>0,使得对于任意的 x 1 , x 2 ∈ N δ ( x 0 ) x_1,x_2 \in N_{\delta}(x_0) x1,x2Nδ(x0),恒有: ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ |f(x_1)-f(x_2)|<\epsilon f(x1)f(x2)<ϵ
    • 洛必达法则
      若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足:
      lim ⁡ x → a f ( x ) = lim ⁡ x → a g ( x ) = 0 或 ∞ \lim_{x\rightarrow a} f(x) = \lim_{x\rightarrow a} g(x) = 0 或 \infty limxaf(x)=limxag(x)=0
      ②在点a的某去心邻域内两者都可导,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0
      lim ⁡ x → a f ′ ( x ) g ′ ( x ) = A \lim_{x\rightarrow a} \frac{f'(x)}{g'(x)} = A limxag(x)f(x)=A,其中A可以是任意常数,也可以是 ∞ \infin ,但必须存在

      则: lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) = A \lim_{x\rightarrow a} \frac{f(x)}{g(x)} = \lim_{x\rightarrow a} \frac{f'(x)}{g'(x)} = A limxag(x)f(x)=limxag(x)f(x)=A

      ⇒ \Rightarrow 若A不存在则原极限不一定不存在,此时洛必达失效

    • 斯托尔茨定理
      设整序变量 Y n → + ∞ Y_n \rightarrow +\infty Yn+,且从某一项 Y n + 1 > Y n Y_{n+1}>Y_n Yn+1>Yn,则 lim ⁡ X n Y n = lim ⁡ X n − X n − 1 Y n − Y n − 1 \lim\frac{X_n}{Y_n}=\lim\frac{X_n-X_{n-1}}{Y_n-Y_{n-1}} limYnXn=limYnYn1XnXn1(若等式右边的极限存在)

    • 海涅定理
      lim ⁡ x → a f ( x ) = b \lim_{x\rightarrow a} f(x) = b limxaf(x)=b 的一个充要条件为:任取 f ( x ) f(x) f(x)定义域内数列{ a n a_n an},且满足 lim ⁡ n → ∞ a n = a \lim_{n\rightarrow \infty} a_n = a limnan=a,则: l i m n → ∞ f ( a n ) = b lim_{n\rightarrow \infty} f(a_n) = b limnf(an)=b

      ⇒ \Rightarrow 海涅定理证明函数极限不存在:若存在两个极限为a的数列 a n , b n a_n,b_n an,bn,不满足 lim ⁡ f ( a n ) = lim ⁡ f ( b n ) = b \lim f(a_n)=\lim f(b_n) = b limf(an)=limf(bn)=b,则函数极限不存在;

    • 两个重要极限

      lim ⁡ x → 0 s i n x x = 1 \lim_{x\rightarrow 0} \frac{sinx}{x} = 1 limx0xsinx=1

      lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x\rightarrow 0} (1+x)^{\frac{1}{x}} = e limx0(1+x)x1=e

    • 其他常用结论

      • lim ⁡ f ( x ) g ( x ) \lim\cfrac{f(x)}{g(x)} limg(x)f(x)存在,且 lim ⁡ g ( x ) = 0 \lim g(x)=0 limg(x)=0,则 f ( x ) = 0 f(x)=0 f(x)=0
      • f ′ ( x 0 ) f'(x_0) f(x0)存在,则 lim ⁡ f ( x 0 + Δ x ) − f ( x 0 − Δ x ) Δ x \lim\cfrac{f(x_0+\Delta x)-f(x_0-\Delta x)}{\Delta x} limΔxf(x0+Δx)f(x0Δx)存在,反之不然;
      • f ′ ( x 0 ) > 0 f'(x_0)>0 f(x0)>0,则 不一定 存在 x 0 x_0 x0的一个领域使连续函数 f ( x ) f(x) f(x)在这个领域内单调递增;
  • 多元函数的极限:

    1)二重极限:设 D ⊆ R 2 D \subseteq R^2 DR2,函数 f ( x , y ) f(x,y) f(x,y) D D D上有定义, P 0 P_0 P0 D D D的聚点,若存在常数 A A A,使得对于任意给定的正数 ϵ \epsilon ϵ,总存在正数 δ \delta δ,当 P ( x , y ) ∈ D P(x,y)\in D P(x,y)D 0 < ρ ( P , P 0 ) < δ 0<\rho(P,P_0)<\delta 0<ρ(P,P0)<δ时,恒有: ∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ϵ |f(P)-A| = |f(x,y)-A|<\epsilon f(P)A=f(x,y)A<ϵ,则称函数 f ( x , y ) f(x,y) f(x,y) P → P 0 P\rightarrow P_0 PP0时以 A A A为极限,记为: lim ⁡ P → P 0 f ( P ) = A \lim_{P\rightarrow P_0} f(P)= A limPP0f(P)=A,也记作: lim ⁡ x → x 0 , y → y 0 f ( x , y ) = A \lim\limits_{x\rightarrow x_0,y\rightarrow y_0}f(x,y) = A xx0,yy0limf(x,y)=A

    ⇒ \Rightarrow n重极限可类比定义;

    2)累次极限:对于二元函数 f ( x , y ) f(x,y) f(x,y),先把变量 y y y固定,这时 f ( x , y ) f(x,y) f(x,y)只是关于 x x x的一次函数,若此时对于一切固定的 y y y,均由 lim ⁡ x → x 0 f ( x , y ) \lim_{x\rightarrow x_0}f(x,y) limxx0f(x,y)存在,则这个极限是关于 y y y的函数,记作: lim ⁡ x → x 0 f ( x , y ) = ϕ ( y ) \lim_{x\rightarrow x_0}f(x,y) = \phi(y) limxx0f(x,y)=ϕ(y);若 lim ⁡ y → y 0 ϕ ( y ) = A \lim_{y\rightarrow y_0}\phi(y) = A limyy0ϕ(y)=A,则称 A A A f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处先对 x x x再对 y y y的累次极限,记作:
    lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) = A \lim\limits_{y\rightarrow y_0}\lim\limits_{x\rightarrow x_0}f(x,y) = A yy0limxx0limf(x,y)=A
    同理可得先对 y y y再对 x x x的累次极限: lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) = B \lim\limits_{x\rightarrow x_0}\lim\limits_{y\rightarrow y_0}f(x,y) = B xx0limyy0limf(x,y)=B

    ⇒ \Rightarrow 累次极限和重极限的存在性之间没有必然关系;
    ⇒ \Rightarrow 累次极限不能随意交换次序;
    ⇒ \Rightarrow 累次极限存在定理:若二重极限 A = lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) A = \lim_{(x,y)\rightarrow (x_0,y_0)} f(x,y) A=lim(x,y)(x0,y0)f(x,y)存在,且对于任一个 y ∗ y^* y,有依x的单重极限 g ( y ∗ ) = lim ⁡ x → x 0 f ( x , y ∗ ) g(y^*) = \lim_{x\rightarrow x_0}f(x,y^*) g(y)=limxx0f(x,y)存在,则累次极限 lim ⁡ y → y 0 g ( y ) = lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) \lim_{y\rightarrow y_0}g(y) = \lim_{y\rightarrow y_0}\lim_{x\rightarrow x_0}f(x,y) limyy0g(y)=limyy0limxx0f(x,y)必存在 ,且等于二重极限 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \lim_{(x,y)\rightarrow (x_0,y_0)} f(x,y) lim(x,y)(x0,y0)f(x,y)



  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值