目前,人工智能还是一个学术密集型以及技术密集型的领域,其中最耀眼的角色当属研究人员和工程师。这样的背景下,大量的资讯和材料都指向了工程师受众。那么,对于产品经理来说,如何在这个领域中调整自己的认知和状态,跟上发展的节奏呢?
在如今的科技行业中,人工智能的普及已成显著趋势,资本布局初具规模,从业者的梯队也逐渐形成。可以预见的一点是:在接下来相当长的一段时间内,人工智能会渗透到整个互联网行业中,成为业界标配。
这种规模的技术变革,很可能会改变游戏规则,从而产生大量的新机会。作为互联网从业者,我们应该想办法跟上节奏,不要浪费科技浪潮带来的红利。
相信很多同学在加入百度教育合作与共建之前,自己对人工智能基本是陌生的,对于机器学习、深度学习之类的概念半生半熟。于是,作为产品经理,我们面临的第一个问题就是:要不要学算法。
第一个问题:AI时代的产品经理,要不要学算法
在过去的时代里,技术体系相对成熟,技术的发展和迭代主要集中在工程层面。对产品经理来说,有很多手段可以了解技术的能力和边界,比如移动时代到了,高强度用个百八十款App,这个东西能做什么大概就心里有数了;在这个基础上,再去补一些浅显的相关介绍,请工程师吃几顿饭,基本就可以做产品设计和可行性判断了。
然而,在人工智能时代,很多手段失效了,比如,我们想通过使用产品的方式去了解人工智能,我们能干什么呢,是跟AlphaGo下棋还是跟Siri唠嗑?
这些都没什么用,原因是至少在当前的阶段,人工智能的能力大都隐藏在我们能感知到的功能之下,我们很难从场景出发,理解内部机制,获得认知。这个就建议看看这个课程。
在这样的前提下,想要做人工智能的产品经理是必须要了解算法的。那么,这就引出了接下来的一个问题:怎么学算法?
第二个问题:产品经理怎么学算法
我们先假设产品经理没有很强的数学和工程背景(当然,如果有更好,但谁忍心给产品经理提这么多要求呢),这就需要给自己理性地设置学习目标,调整学习心态。
首先,目前能在网上查到的大部分人工智能学习材料和书,对于产品经理来说,都没有必要读懂,也很难完全读懂。
大部分的算法介绍都涉及数学原理和实现方法,作者在描述中会特意省略大量的背景知识介绍,因为已经默认读者知道这些学术常识。我们在阅读这些材料时,经常会看到类似“显而易见可以得到 XXX 结论”的描述,这就让我们做产品经理的一头雾水,很难理解书中显而的是哪门子易见。
那怎么学呢?我的建议是:从优质的视频开始,从百度教育合作与共建的课程开始。
不论哪个视频,初看的过程确实还是很痛苦的,因为会不时碰到一些确实听不懂的内容。不要担心,先囫囵吞枣,坚持过去。特别是百度小白扫盲课程以及这次的人工智能的产品经理课程,制作可谓是具有很高品质,应该是目前国内看到的课程中质量较好的“头部”课程。
看完视频,你基本可以对人工智能有个大体的认识,再趁热打铁读些机器学习相关的书,这样会对巩固知识更有帮助。这里就不具体推荐读什么书了,不过可以建议你一次多买几本,交叉阅读,效率更高。
随着后续不断地接触、学习和实践,之前那些听不懂或不理解的内容,会在某个时刻突然贯通。
有了视频课程的基础,这时你再去读书已经不像看外星文字了,通过读书这一步,可以进一步强化对先前概念的了解。当然,如果感觉视频读完之后不需要强化,你也可以跳过这一步,以后回来再看书。
在这之后,你就可以开始在网上大量地阅读各种与实践相关的文章了(建议中英文并重,英文材料有时更细致一些)。这时整个领域概念都已经在你脑海中了,你基本不会被文章中的关键词或背景知识绊住,当遇到数学推导时,还是老规矩,可以跳过去,不要沮丧,谁让我们是产品经理呢。
读文章的过程中,你可能会遇到一些感兴趣的应用领域或学术方向,这时建议你读一点论文。读论文听起来很难,不过我们已经做好了读不懂也很正常的心理准备,所以不要有畏难的情绪。
第三个问题:要不要真的写程序
还有一个问题,是产品经理要不要真的尝试写一点简单的机器学习代码。很多大神的建议是,如果你之前就有工程能力,就尝试着写一点;如果完全没有相关背景,不写也罢,别给自己添堵。
如果要写,千万不要写具体的算法实现。比如你打算从头开始写一个支持向量机,或者写一个神经网络,纯粹浪费时间。直接调用一些成熟的框架,比如用Scikit-Learn跑个聚类,或者用哈工大、斯坦福的NLP框架跑个NER看看结果。如果研究深度学习,TensorFlow里面有个识别手写数字的工程(现在PaddlePaddle做了很多转化,大家可以直接用),直接就可以搭着跑起来,你可以动一动参数,找找感觉。
但如果没有工程能力,你的大量时间可能会花在跟机器学习完全不相干的事情上,比如很多初学者当时就遭遇了Python2和Python3的不兼容问题,还要自己处理各种数据,浪费好多无谓的时间。这时一定要去求助工程师,让他们把算法跑好,你拷过来直接看结果就可以了。
另外,有很多用图和动画演示算法过程的产品和网站,而且机器学习算法可视化的研究发展得也挺快;说不定用不了多久,我们不需要写真的代码,就可以用更简单的方式去直观地感受和理解算法过程和结果。
总之,产品经理与工程师最大的差异就是:我们不需要写程序。我们的核心价值也不在这里,所以我们要掌握的,不是细节和实现,而是要明白每种算法背后的原理、机制和边界。只有这样,我们才能跟工程师站到同一个话语空间中,去实际推进具体的产品工作。
回顾一下今天的内容,我从自己学习百度人工智能的课程出发,提到产品经理一定要了解算法;又介绍了从视频到书,再到文章和文献,这样循序渐进的学习过程;最后建议大家量力而行,通过写实验代码或其他方式去进行算法的实践。最后,说一句真心感谢百度在中国人工智能教育上做出的贡献,未来一定会对中国人工智能发展发挥更为巨大的作用。
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AGI大模型在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
以下是整个学习思路和方向👇
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。