随着人工智能技术的飞速发展,AI大模型已成为当今科技领域的热门话题。这些拥有数十亿甚至数千亿个参数的庞然大物,正以前所未有的方式改变着我们的生活和工作。
1、什么是大模型?
想象一下,你有一个超级学霸朋友,他不仅读过图书馆里所有的书,还能瞬间总结知识点,甚至帮你写论文、设计PPT……这就是大模型!
大模型,全称“大规模预训练模型”,是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这类模型通过海量数据的训练,能够理解和生成人类语言,展现出接近人类的对话和推理能力。
通常说的大模型的“大”的特点体现在:参数数量庞大、训练数据量大、计算资源需求高
训练大模型需要巨大的计算资源。以当前最先进的模型为例,其训练过程可能需要数百万张GPU显卡的计算能力,并消耗巨量的存储空间。这种"规模红利"使得大模型在多个领域展现出了超越传统算法的优势。
2、大模型的发展历程
大模型发展历经三个阶段:萌芽期(1950-2005)、沉淀期(2006-2019)和爆发期(2020-至今)。
萌芽期(1950-2005):以CNN(卷积神经网络)为代表的传统神经网络模型阶段。1956年,约翰·麦卡锡提出“人工智能”概念,1980年CNN雏形诞生,1998年LeNet-5诞生,为自然语言生成、计算机视觉等领域的深入研究奠定了基础。
沉淀期(2006-2019):以Transformer为代表的全新神经网络模型阶段。2013年Word2Vec诞生,2014年GAN诞生,2017年Transformer架构提出,2018年OpenAI发布GPT-1,2019年GPT-2发布。
爆发期(2020-至今):以GPT为代表的预训练大模型阶段。2020年OpenAI推出GPT-3,2022年ChatGPT横空出世,2023年GPT-4发布,2024年DeepSeek崛起,标志着人工智能进入“普惠”时代。
3、 大模型分类
大模型有很多种类别。通常所说的大模型,主要是指语言大模型(也叫大语言模型,简称LLM),它们专注于自然语言处理,展现了强大的文本理解和生成能力。按处理数据类型划分,除了语言大模型,还有视觉大模型和多模态大模型。此外,大模型的分类还涉及应用领域、功能等多个维度,不同的大模型,展现出了多样化的功能和性能。
(仅供参考)
4、大模型应用实践
在自然语言处理(NLP)领域,大模型已经实现了突破性进展。文本生成、机器翻译、问答系统等任务的效果都显著提升。以ChatGPT为例,它不仅能够回答复杂问题,还能进行多轮对话,在教育、客服等领域展现出巨大的应用潜力。
生成式人工智能的崛起为创意产业带来了革命性的变化。AI绘画工具如DALL-E和MidJourney,可以根据用户提供的文本描述生成高质量图像;AI音乐生成系统能够创作旋律优美的音乐作品;AI写作助手则可以帮助写作者提升内容质量。
在行业应用方面,大模型正在推动医疗、金融、教育等多个领域的智能化转型。智能客服系统通过大模型实现更自然的对话交互;医疗辅助诊断系统能够帮助医生提高诊断准确率;金融风险评估模型可以提供更精准的决策支持。
“大模型应用实践”表格,涵盖不同模态和应用场景(仅供参考):
在深入解析大模型的基本概念、细致分类以及广泛的应用实践之后,我们可以看到人工智能技术正引领着时代的变革。作为河北省首个全栈自主创新的计算中心,河北人工智能计算中心不仅积极推动人工智能技术的革新与发展,更将大模型的应用拓展至更广泛的领域。目前,该中心已成功部署并上线DeepSeek-R1-Distill系列模型,并携手合作伙伴,共同提供DeepSeek-V3和DeepSeek-R1满血版模型服务,为行业的智能化转型注入了新的活力与动力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。