随着人工智能技术赋能千行百业,相关人才需求激增、薪酬待遇也水涨船高。记者走访就业市场时了解到,多地招聘会都聚焦AI相关岗位的创新人才。
在浙江杭州高新区的一场招聘会上,100多家企业提供了2200多个岗位,其中,绝大部分与AI相关。
记者了解到,自开年以来,像这种聚焦AI以及相关岗位的招聘会,杭州市高新区就密集举办了10余场,累计提供岗位超1.2万个。
而在浙江慈溪,一些传统制造企业也因为转型升级,急需AI大模型算法工程师等人才。有企业开出年薪超50万元、可进入博士后工作站等优厚待遇。
某招聘平台执行副总裁李强表示:人工智能相关的,跟技术、算法、工程相关的岗位,今年以来需求总共上涨了13%。算法工程师只要稍微有一点经验,基本起薪都达到了3.5万元左右。北京、深圳、杭州三个城市产生了大量的岗位,人才基本会围绕这三个城市流转。
而在一家成人教育公司,招聘工作人员表示,随着AI应用课程需求激增,企业急需招到既懂教育培训又有AI相关背景的人员,但是,复合型人才目前相对难招。
调研显示,在需求端,AI相关岗位的准入门槛也相对较高。
近一年明确要求硕博学历的职位占比为46.98%。其中,对算法工程师、图像算法、机器视觉、深度学习、机器学习等专业人才的需求量较大。
刚刚研究生毕业的李金欣本科专业为广告学,研究生进修了人机交互专业,在今年的就业市场上,她得到了不少企业的青睐。
迎接AI浪潮代表委员热议“人工智能+”
3月3日,出席十四届全国人大三次会议的北京团代表陆续报到,“人工智能(AI)”成为不少代表关注的高频话题。
全国人大代表、首都师范大学校长方复全说,该校正在筹建人工智能学院;
全国人大代表、北京金象复星医药股份有限公司白塔寺药店总药剂师张海鸥希望推动人工智能技术深入药剂师工作中;
全国人大代表、北京市首都公路发展集团有限公司京开高速公路管理分公司榆垡收费管理所收费班长王争希望加强对一线员工人工智能教育方面的培训……
2024年,“人工智能+”行动首次出现在政府工作报告中。报告指出,深化大数据、人工智能等研发应用,开展“人工智能+”行动,打造具有国际竞争力的数字产业集群。一年过去,人工智能的热度居高不下,代表委员也密切关注,在各自的专业领域“解码”人工智能。
根据中国互联网络信息中心发布的《生成式人工智能应用发展报告(2024)》,我国初步构建了较为全面的人工智能产业体系,相关企业超过4500家,核心产业规模已接近6000亿元人民币,产业链覆盖芯片、算法、数据、平台、应用等上下游关键环节。
记者在采访中了解到,与去年相比,今年代表委员在介绍建议或调研经历时,经常会先聊起人工智能。
“我现在要把人工智能‘吃透’。”2月28日下午,北京市政协、市委统战部联合召开北京市推荐的全国政协委员情况通报会会前,全国政协委员、北京交通大学教授钟章队说。
“人工智能+”该向何处去?在不少代表委员眼中,打通“人才关”成为人工智能发展的主要破题路径。
全国政协委员、北京通用人工智能研究院院长朱松纯说,今天的人工智能人才培养计划关键在于“跨领域”——跨学科、跨专业、跨学校。如果人才定位在单一领域,视野就极大窄化,与未来社会需要的复合型人才、跨学科人才目标相背离。
方复全认为,一方面可以将人工智能与教育深度结合,从学科布局、专业设置等方面借势人工智能;另一方面,提升学生掌握人工智能的能力,未来他们走向基础教育战线时,能将新技术引入教育教学中,让人工智能链接人文社科、艺术学科、科学等,打造**“人工智能+X”**的模式。
全国政协委员齐向东提到,面对人工智能行业的人才缺口,关键是打通企业和高校两个“蓄才池”,给青年创新人才更多施展拳脚的机会。
他建议,加大力度推动校企融合,通过选取人工智能领域相关的骨干科技企业作为大学生就业实训基地、鼓励校企开展联合攻关等方式,给年轻人更多深入产业一线的机会,从而逐步化解我国面临的AI“人才荒”。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。