随着人工智能技术的飞速发展,大型语言模型(LLMs)在医疗护理领域展现出巨大潜力。然而,通用型大模型对护理专业知识的掌握有限,难以满足临床实际需求。
通过将专业护理文献转化为高质量微调数据集,我们可以培养出真正"懂护理"的AI助手,为护理科研与临床实践提供精准支持。
本文将系统介绍如何构建护理医疗大模型微调数据集的完整流程。
一、为什么护理领域需要专业微调?
通用大模型如ChatGPT在医疗领域已展现出惊人能力,但在护理专业领域仍面临明显短板:
❎ 专业术语理解不足:护理领域拥有大量特定术语和评估量表
❎ 工作流程把握不准:标准护理操作流程与临床路径需要专业训练
❎ 循证实践缺失:缺乏对最新护理实证研究的掌握
❎ 决策支持能力弱:无法提供可靠的护理临床决策支持
通过专业微调,可使大模型显著提升在护理领域的表现。
二、护理文献数据集构建的五步法
将零散的护理文献转化为结构化、高质量的微调数据集,需要遵循以下系统化步骤:
2.1 文献收集与筛选
首先,从多渠道获取权威护理文献资源:
- 期刊论文:《Journal of Nursing Care Quality》等核心期刊
- 临床指南:各专科护理指南、护理操作常规手册
- 教科书:护理学基础教材、专科护理学教程
- 案例报告:典型护理案例与解决方案
2.2 文本预处理与清洗
收集的原始文献需要进行标准化处理:
- 格式转换:将PDF、Word等格式统一转为纯文本格式
- 内容净化:移除参考文献、页眉页脚、图表说明等非核心内容
- 文本分段:按照语义完整性将长文本切分为适合模型处理的片段
- 去重处理:识别并移除重复内容,避免模型学习偏差
- 术语标准化:统一专业术语表达,处理缩写和同义词
2.3 结构化转换:从文本到训练样本
这一步是整个流程的核心,将清洗后的文本转换为模型可训练的结构化格式,将护理文献内容转换为"指令-输入-输出"的标准格式:
{
"instruction": "描述压疮的Braden评分量表包含哪些维度?",
"input": "",
"output": "Braden评分量表包含六个维度:感觉、湿度、活动度、移动能力、营养状况和摩擦力/剪切力。每个维度按1-4分评分,总分越低,压疮风险越高。"
}
2.4 数据增强与多样化
单纯从文献提取的数据可能覆盖不全面,需要通过数据增强技术来扩充
✦ 基础策略
-
问题改写
-
场景拓展
-
难度梯度
-
反例学习
✦ 高级策略
-
多角度问题构建
-
临床情境模拟
-
知识关联拓展
-
多模态数据整合
针对同一知识点,构建不同类型、不同复杂度的问题:
例:针对"压力性损伤"的多层次问题构建
1 | 基础知识:“什么是压力性损伤?其分级标准是什么?” |
---|---|
2 | 评估工具:“如何使用Braden量表评估压疮风险?” |
3 | 临床应用:“ICU昏迷患者如何预防压力性损伤?” |
4 | 案例分析:“一位长期卧床的老年患者出现骶尾部红斑,如何评估与处理?” |
2.5 质量控制与专家审核
高质量的微调数据集离不开严格的质量控制:
- 专家审核:由临床护理专家对生成的问答对进行审核
- 临床实践验证:确保内容符合最新护理规范和临床实践
- 内容平衡:确保各专科、各难度层级的内容比例平衡
- 数据标注:对每条数据进行分类标注
三、护理文献转换实战案例
通过开源项目Easy Dataset,展示如何自动化将一篇《糖尿病前期中医药循证临床实践指南》转化为微调数据集
1、 部署项目
项目地址:https://github.com/ConardLi/easy-dataset
作者说目前没有线上版本,需要本地部署,界面如下:
2、模型配置
3、 上传指南
4、分割文本块
5、问题生成
6、人工check
7、数据集下载
四、微调数据集的应用场景
经过护理专业微调的大模型可应用于多种场景:
★ 总结 ★
构建高质量的护理领域微调数据集是打造专业护理AI助手的关键一步。通过系统化的文献转换流程,我们可以将丰富的护理专业知识有效地"教授"给大模型,使其真正理解和掌握护理实践的核心要义。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。