机器人+人工智能如何重塑工业?信通院88个案例揭示汽车电子金属三大行业转型(免费领报告)

《中国信通院:“机器人+人工智能”工业应用研究报告》 是中国信通院推出的AI大模型报告。

这篇报告勾勒出"AI+机器人"撬动工业革命的清晰图景,读完后最直观的感受是:苏州正悄然成为这场革命的"风暴眼"。作为长三角制造业重镇,这里不仅坐拥拓斯达、钧舵等本土机器人新贵,更吸引了特斯拉、优必选等巨头布局,形成从核心部件到整机应用的完整生态链。这种产业集群效应,恰似当年硅谷之于互联网革命。

技术演进路径中,“具身智能"的突破最令人兴奋。不同于传统机械臂的"肌肉记忆”,新一代机器人开始具备"条件反射"——特斯拉Optimus能像人类维修工般灵活调整扳手角度,灵猴检测机器人仅凭单次扫描就能捕捉螺纹的微观缺陷。这种进化背后,是AI大模型从"云端大脑"向"终端小脑"的渗透,就像给工业设备装上了会自主学习的神经系统。

不过现实骨感的一面同样明显。参观过苏州某半导体工厂后发现,号称"关灯生产"的车间里,AMR机器人仍需要工程师手持平板电脑"保驾护航"。数据壁垒和场景碎片化,让具身智能的落地更像在解九连环——即便强如华为盘古大模型,在电缆厂实操中仍需反复调试动作轨迹。这揭示出残酷真相:工业场景的复杂性远超实验室,AI要跨越从"看得懂"到"干得稳"的鸿沟,可能比预想中更艰难。

值得关注的是,这场变革正在重塑制造业价值分配。报告中的艾吉威AGV案例颇具启示:当物流机器人搭载语音交互系统,它不再是简单的搬运工,而是能实时分析产线数据的"现场总监"。这种进化让制造企业开始重新评估——究竟是该买设备,还是买"数字化生产力"?这种认知转变,可能催生"机器人即服务"的新商业模式。

站在2025年的门槛回望,苏州的实践似乎预示着一个新制造时代的轮廓:这里既是国产机器人逆袭"四大家族"的战场,也是AI破解工业4.0密码的试验场。当人形机器人开始给新能源汽车拧螺丝,当检测算法能识别22微米的焊接缺陷,我们或许正在见证人类工业史上最奇特的转型——生产线,正在从机械的延伸进化为智能的生命体。

文档部分截图如下:

文末有免费下载方式

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值