大厂偏爱LangChain?一文深度剖析大模型开发框架秘诀

在当下大模型应用开发的浪潮中,LangChain宛如一颗璀璨之星,备受大厂青睐。本文将全方位拆解这一主流开发框架,带您深入领略其魅力。

LangChain框架示意图

一、为何LangChain如此受宠?

若从OpenAI的API着手构建大模型应用,开发者定会遭遇重重困境。Prompt管理混乱无序,调用逻辑错综复杂,多模型集成仿若天方夜谭,与外部工具对接困难重重,内存管理和调试追踪更是难上加难。

而LangChain的出现,宛如救星降临。它让开发者得以从繁琐的底层事务中解脱,专注于业务核心,仅需寥寥几行代码,便能实现核心功能,大大提升开发效率。

img

二、LangChain究竟是什么?

1. LLM技术栈设计思路

LLM技术栈主要由数据预处理、嵌入与向量存储、LLM终端和LLM编程框架四大板块构成。数据预处理为模型输入做准备,嵌入与向量存储助力数据高效处理,LLM终端负责与模型交互,LLM编程框架则提供开发便利。

LangChain之所以广受欢迎,在于其以链的概念内置标准化方案,开发者可直接取用封装好的组件,省时省力。

img

2. LangChain框架核心模块

LangChain框架包含诸多核心模块。langchain - core作为基础,为其他模块提供支撑;Integration packages用于集成各类工具;langchain是核心功能集合;langchain - community汇聚社区贡献;langgraph助力可视化。

此外,框架中的LangGraph和LangSmith也各有其能,LangGraph实现流程可视化,LangSmith则用于模型评估与管理,让整个框架功能更加完备。

img

三、如何运用LangChain?

1. 项目效果展示

以带RAG能力的ChatBot项目为例,通过图片展示,我们可以直观看到其交互方式与输出结果。用户与ChatBot一问一答,ChatBot凭借RAG能力,给出准确且丰富的回答,仿佛一位知识渊博的伙伴。

img

2. 关键步骤解析

该项目技术开发环境涵盖LangChain、Ollama、Qwen2.5和Jupyter。在基础构建阶段,搭建项目基础架构;智能链构建时,运用LangChain构建智能逻辑;交互式聊天框架构建,打造用户交互界面;最后应用程序运行,使ChatBot正式上线。

img

每个步骤都配有详细代码示例与注释,即便初学者也能轻松上手。

总之,LangChain在大模型应用开发领域优势尽显,无论是开发效率提升,还是功能实现的便捷性,都值得开发者深入研究与应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值