是否仍在为动态页面反爬策略彻夜调参?是否还在自动化测试中疲于维护定位脚本?当传统数据采集与自动化测试手段遭遇技术瓶颈,Browser Use融合AI大模型技术正在重塑行业范式——通过构建拟人化决策引擎,实现两大核心突破:
- 智能数据采集系统:基于语义理解与视觉认知,自主解析网页信息架构,动态生成最优抓取策略,突破传统反爬机制
- 自进化UI测试框架:模仿人类操作逻辑,通过多模态感知实时分析页面状态,自动生成容错路径,实现测试过程的自适应优化
这项技术突破使程序具备:上下文语义解析、视觉元素推理、异常状态自愈三大核心能力,真正跨越了规则驱动型自动化工具的性能边界,开启智能自动化新纪元
今天给大家介绍一下Browser Use!
1、Browser Use是什么
Browser Use是一个基于Python开发的开源库,它将先进的AI技术与浏览器自动化功能深度融合。通过集成Playwright等浏览器自动化工具,Browser Use允许开发者使用任何支持LangChain的大型语言模型(如GPT-4、Claude、DeepSeek等)来自动化浏览网页、提取信息、模拟用户操作等。
Browser Use的主要功能包括:
自动化浏览网页: 通过AI智能体自动化地浏览网页,执行各种操作。
提取信息: 从网页中提取所需信息,如文本、图片等。
模拟用户操作:模拟用户的点击、输入等操作,完成复杂的任务。
Browser Use的核心特点包括:
视觉与HTML内容解析:能够自动识别并提取网页中的视觉元素和HTML结构,为AI智能体提供详尽的数据输入。
多标签页自动化管理:能够高效地管理多个网页标签页,确保AI智能体能够无缝切换。
记录和重复执行特定操作: 记录AI智能体执行点击操作时的XPath路径,使得使用者能够复现特定的操作。
自定义操作: 允许使用者注册自定义操作,如文件保存、数据库推送、通知发送以及用户输入获取等。
自我纠正机制:在自动化过程中遇到意外情况时,能够重新尝试或调整策略,提升任务成功率。
并行执行: 支持并行执行多个AI智能体,提高任务执行的效率
Browser Use的使用场景
- 自动化任务:适合重复高频的浏览器操作任务,如表单填写,信息检索,文件下载
- 数据收集:适合爬取网络上的数据,如爬虫
- 自动化测试:适合WEB UI自动化测试,结合pytest轻松实现web自动化
2、环境安装
1、安装python环境,python版本要求3.11及以上
2、安装browser use库
pip install browser-use
3、安装playwright
playwright install
3、实例展示
一、爬取基金数据
llm = ChatOpenAI(
model='deepseek-chat',
api_key='*************',
base_url='https://api.deepseek.com',
temperature=0
)
asyncdefmain():
agent = Agent(
task="""
1、导航到网址:https://fund.eastmoney.com/
2、点击基金排行
3、返回排行前10的基金数据,以json格式返回
""",
llm=llm,
use_vision=False,
)
result = await agent.run()
print(result.final_result())
asyncio.run(main())
效果展示
1、导航到指定网址
2、点击基金排行
3、提取top 10的基金数据
DEBUG [browser_use] --act Execution time: 0.00 seconds
INFO [controller] 📄 Extracted from page
: ```json
{
"top_10_funds": [
{
"rank": 1,
"fund_code": "018124",
"fund_name": "永赢先进制造智选混合发起A",
"date": "03-07",
"unit_net_value": "2.1654",
"cumulative_net_value": "2.1654",
"daily_growth_rate": "2.21%",
"1_week": "9.15%",
"1_month": "17.58%",
"3_months": "64.06%",
"6_months": "191.13%",
"1_year": "115.94%",
"since_inception": "116.54%",
"handling_fee": "0.15%"
},
{
"rank": 2,
"fund_code": "018125",
"fund_name": "永赢先进制造智选混合发起C",
"date": "03-07",
"unit_net_value": "2.1501",
"cumulative_net_value": "2.1501",
"daily_growth_rate": "2.21%",
"1_week": "9.15%",
"1_month": "17.54%",
"3_months": "63.89%",
"6_months": "190.55%",
"1_year": "115.07%",
"since_inception": "115.01%",
"handling_fee": "0.00%"
},
{
"rank": 3,
"fund_code": "016530",
"fund_name": "鹏华碳中和主题混合A",
"date": "03-07",
"unit_net_value": "1.7881",
"cumulative_net_value": "1.7881",
"daily_growth_rate": "3.00%",
"1_week": "10.23%",
"1_month": "22.92%",
"3_months": "68.07%",
"6_months": "178.39%",
"1_year": "104.00%",
"since_inception": "78.81%",
"handling_fee": "0.15%"
},
{
"rank": 4,
"fund_code": "016531",
"fund_name": "鹏华碳中和主题混合C",
"date": "03-07",
"unit_net_value": "1.7685",
"cumulative_net_value": "1.7685",
"daily_growth_rate": "3.00%",
"1_week": "10.21%",
"1_month": "22.86%",
"3_months": "67.81%",
"6_months": "177.59%",
"1_year": "102.79%",
"since_inception": "76.85%",
"handling_fee": "0.00%"
},
{
"rank": 5,
"fund_code": "001970",
"fund_name": "泰信鑫选灵活配置混合A",
"date": "03-07",
"unit_net_value": "1.3310",
"cumulative_net_value": "1.3310",
"daily_growth_rate": "-1.04%",
"1_week": "7.25%",
"1_month": "4.80%",
"3_months": "31.00%",
"6_months": "125.59%",
"1_year": "95.45%",
"since_inception": "33.10%",
"handling_fee": "0.15%"
},
{
"rank": 6,
"fund_code": "002580",
"fund_name": "泰信鑫选灵活配置混合C",
"date": "03-07",
"unit_net_value": "1.3220",
"cumulative_net_value": "1.3220",
"daily_growth_rate": "-0.97%",
"1_week": "7.31%",
"1_month": "4.84%",
"3_months": "31.15%",
"6_months": "125.60%",
"1_year": "95.27%",
"since_inception": "31.67%",
"handling_fee": "0.00%"
},
{
"rank": 7,
"fund_code": "016295",
"fund_name": "新华利率债债券E",
"date": "03-07",
"unit_net_value": "1.7977",
"cumulative_net_value": "1.9906",
"daily_growth_rate": "-0.13%",
"1_week": "-0.06%",
"1_month": "-0.66%",
"3_months": "0.85%",
"6_months": "94.13%",
"1_year": "92.89%",
"since_inception": "99.00%",
"handling_fee": "0.00%"
},
{
"rank": 8,
"fund_code": "019457",
"fund_name": "平安先进制造主题股票发起A",
"date": "03-07",
"unit_net_value": "1.7593",
"cumulative_net_value": "1.7593",
"daily_growth_rate": "1.78%",
"1_week": "10.41%",
"1_month": "23.92%",
"3_months": "57.40%",
"6_months": "134.29%",
"1_year": "90.71%",
"since_inception": "75.93%",
"handling_fee": "0.15%"
},
{
"rank": 9,
"fund_code": "019458",
"fund_name": "平安先进制造主题股票发起C",
"date": "03-07",
"unit_net_value": "1.7452",
"cumulative_net_value": "1.7452",
"daily_growth_rate": "1.78%",
"1_week": "10.40%",
"1_month": "23.87%",
"3_months": "57.17%",
"6_months": "133.60%",
"1_year": "89.59%",
"since_inception": "74.52%",
"handling_fee": "0.00%"
},
{
"rank": 10,
"fund_code": "007713",
"fund_name": "华富科技动能混合A",
"date": "03-07",
"unit_net_value": "1.4600",
"cumulative_net_value": "1.5100",
"daily_growth_rate": "1.47%",
"1_week": "8.19%",
"1_month": "18.94%",
"3_months": "47.07%",
"6_months": "135.41%",
"1_year": "89.14%",
"since_inception": "51.93%",
"handling_fee": "0.15%"
}
]
}
二、结合pytest实现页面自动化测试
异步执行需要安装插件pytest-asyncio
pip install pytest-asyncio
@pytest.mark.asyncio
@pytest.mark.parametrize("username,password,expected", [("kevin@xxxx.com", "a123456", "kevin"),("kevin@xxxx.com", "123456", "账号密码输入错误")])
asyncdeftest_login(username, password, expected):
agent = Agent(
task=f"""
1、导航到网址:https://xxxxxxx.com
2、输入用户名:{username}, 密码:{password}
3、点击登录按钮
4、验证是否登录成功,登录成功返回{expected}
""",
llm=llm,
use_vision=False,
)
result = await agent.run()
assert expected in str(result.final_result())
效果展示
4、总结
Browser Use 深度集成大语言模型(LLM),通过语义理解与视觉决策链实现零硬编码自动化,彻底颠覆传统脚本开发模式。AI 自动解析页面结构、动态生成操作路径,无需人工编写 XPath/CSS 定位器,开发效率提升 5 倍以上,尤其擅长处理动态验证、反爬策略及多步骤交互场景,成为金融数据抓取、跨平台测试的新一代智能引擎。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。