题目(leecode T1049):
有一堆石头,用整数数组 stones
表示。其中 stones[i]
表示第 i
块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x
和 y
,且 x <= y
。那么粉碎的可能结果如下:
- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0
。
方法:本题的背景说的比较复杂,但其实和昨天的分割子集问题很像,意思就是分割这样一个集合,使得最后分割得到的两个集合的总和差最小即可。这样就可以发现前面所有的步骤都可以套用昨天的问题,只是在最后得到最终的dp数组时,我们要如何得到这个最小可能的重量值。因为dp[target]表示容量为target的背包所能装载的最大重量的石头,我们把target定义为sum/2的值。那么另一堆肯定就是sum-dp[target]。这两个结果的差值就是最小能获得的重量。由于sum/2是向下取整,所以sum-dp[target]肯定是大于dp[target]的。那么最终的值其实就是sum-dp[target]-dp[target]。
题解:
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
vector<int> dp(1501, 0);
int sum = 0;
for(int i = 0; i < stones.size(); i++) sum += stones[i];
int target = sum / 2;
for(int i = 0; i < stones.size(); i++){
for(int j = target; j >= stones[i]; j--){
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - 2 * dp[target];
}
};