买卖股票的时机系列总结

本文介绍了两种解决股票交易问题的方法:贪心算法和动态规划。在贪心策略中,只需比较相邻价格差,若为正则累积利润。动态规划则通过维护两个状态(持股和不持股)来寻找最大利润,每一步更新这两种状态的最大值。最终,这两种方法都能在给定的股票价格数组中找到最大收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 买卖股票的最佳时机 II
    给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)

方法一、贪心
由于买卖次数不受限制,而且没有代价,所有只需要使区间获利大于0,就可以进行交易

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int ans = 0;
        for (int i = 0; i < prices.size()-1; i++){
            int temp = prices[i+1] - prices[i];
            if(temp > 0){
                ans += temp;
            }
        }
        return ans;
    }
};

方法二、动态规划

状态:
在一天内有2种状态,
dp[i][0]——当天结束时不持有股票
dp[i][1]——当天结束时持有股票

初始化:
第一天,dp[0][0]=0,dp[0][1]=-prices[0]

更新:
依然分为2种情况,分别对两种状体进行更新

	dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
	dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i]);
	
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int dp[prices.size()][2];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        for(int i = 1; i < prices.size(); i++){
	        dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]);
	        dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i]);
        }
        return dp[prices.size()-1][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值