- 博客(26)
- 收藏
- 关注
原创 2022霍夫曼编码+权重预测-Efficient RDHE binary image with Huffman encoding and weight prediction
将大小为的原始图像划分为互不重叠的子块,每一个子块隶属于全黑块、全白块以及黑白混合块,依次标记为“1”、“00”、“01”,形成位置图。标记完成后即是一个0、1比特序列,为节省空间达到增加可用空间的目的,可以进行无损压缩进行保存。此外,对块进行了重新排列,将黑白块放在前面、混合块放在后面。重排之后的图像就可以统一的划分为非混合块和混合块。为了确保图像最终能够被正确地恢复,位置图、位置图的长度以及混合块的起始位置被认为是辅助信息并且被顺序地嵌入到非混合块中。
2024-04-08 10:44:37 601
原创 2023自适应霍夫曼编码High-performance RDHEI with adaptive Huffman code
保留第一行、第一列的像素作为参考像素,使用中值边缘检测器(MED)进行像素预测。根据预测像素和原始像素的八位二进制序列相同位数来确定每个像素的Label。注意参考像素的Label设置为-1。以下图为例:当标签为4时,说明该位置可以嵌入的bit数为4,在恢复时,MSB-(-1)位与预测像素相同,第位与预测像素相反。
2024-03-27 15:54:40 1027
原创 2023混合多比特层-RDHEI Based on the Mixed Multi-Bit Layer Embedding Strategy
加密之前腾出空间的操作,主要包含两轮分割、参数的设置、辅助信息的生成和其他步骤。
2024-03-26 10:00:22 1774
原创 2021多MSB压缩Multi-MSB_Compression_Based_Reversible_Data_Hiding_Scheme_in_Encrypted_Images
一个的原始图像可以划分为8个位平面,依次为,其中是最高位平面;第一行第一列的像素作为参考像素,整个位平面的预测如下:其中参数的计算如下::表示中像素的低位的原始值:表示中像素的低比特的反转值:更准确的说是表示周围三个像素计算平均值从而获得的预测像素给出一个计算的例子,下图展示了IMIP预测:橙色区域是参考像素下表给出了对应的预测值计算:由于自然图像的高位平面有着更紧密地关系,所以参数的概率增加,也就是说。高位平面有更多的0。
2024-03-20 16:03:07 793
原创 2023层次块+可变长度编码-RDH_With_Hierarchical_Block_Variable_Length_Coding_for_Cloud_Security
RRBE本文仅供自我学习笔记使用,如有侵权联系立删~
2024-03-17 20:52:21 963
原创 2022基于向量的多MSB替换-Vector-based Efficient DHEI via Multi-MSB Replacement
RRBERRBE本文仅供自身学习记录,切勿转载和搬运,如有侵权联系立删~
2024-03-12 09:37:04 1023
原创 2023MSB位平面蛇形重排和压缩Capacity_RDHEI_Based_on_MSB_Bit-Plane_Serpentine_Rearrangement_and_Compression
RRBE仅供个人学习记录,切勿转载和搬运,如有侵权联系立删~
2024-03-08 16:05:27 419 1
原创 2023预测误差位平面冗余-RDHEI Based on Bit-Plane Redundancy of Prediction
边缘像素作为参考像素保持不变,使用SGAP对其他像素进行计算,如下式,从而获得预测像素除参考像素外,计算每个像素的预测误差:抛去参考像素,留下黄色区域矩阵,如左图:由于预测误差存在正负,所以需要记录误差标志图作为辅助信息如右图,负1正0,总长度为。因此获得了绝对值矩阵,与参考像素共同组成预测误差图。
2024-03-06 11:22:49 962
原创 2023四色方法_RDHEI_Using_Four-Color_Approach
将原始图像分为高阶位部分+低阶位部分来利用潜在的空间相关性。首先将灰度图像的每一位像素转换成8位二进制序列,假设高阶位平面包含M个,那么剩下的低阶位平面为N个,则时所对应的十进制可以由下式得到:最后,将所有的高阶位比特部分划分为方形块,例如8×8、16×16、32×32.
2024-03-04 16:16:07 750
原创 2023MSB预测+误差嵌入-A_Universal_RDHEI_Based_on_MSB_Prediction_and_Error_Embedding
加密和数据隐藏框架数据提取和图像重建的框架首先,计算原始图像I的每个像素以检测预测误差。其次,将预测误差存储到错误位置二进制映射中,并对错误位置进行修改,以避免标志块的误判。然后生成边信息以记录修改后的错误位置。同时,通过使用加密密钥来生成加密图像。第三,将划分为三种类型的块(错误块、标志块和消息块),以生成标记的错误位置二进制映射。具体地,标志块用来标记包含中的预测误差的错误块,其余的块是消息块。之后,通过使用数据隐藏密钥对秘密消息进行加密。
2024-01-29 15:53:47 984 1
原创 High capacity reversible data hidingin encrypted images using block labeling【2023】
RRBE。
2024-01-23 11:07:03 880
原创 Design and development of reversible data hiding‑homomorphic encryption & rhombus pattern predictio
首先使用菱形预测器对原始图像进行预测。C1TC2LC3RC4BC5橙色区域是预测像素的位置,也就是可嵌入附加信息的位置,蓝色区域是参考像素,不可嵌入。得到预测值之后,根据误差,构建修改的图像。具体构建方程如下式:接着对构造的图像进行加法同态加密:其中,是发送者的私有密钥,是接收方的私钥(是接收方的私钥,是随机数),是图像位深度,如灰度图的位深度为8。然后利用随机种子生成随机数,对也进行同态加密:最后。将加密后的。
2024-01-15 16:14:30 534
原创 High Capacity Reversible Data Hiding Based on the Compression of Pixel Differences【2020】
VRAEVRAE。
2024-01-09 16:46:02 931 1
原创 High Capacity Reversible Data Hiding in Encrypted Images Based on Adaptive MSB Prediction【2022】
VRAE。
2024-01-08 16:42:32 1881
原创 基于均值预测(MVP)的密文图像可逆信息隐藏【2023】
MVP思想:对图像分为不重叠的块,分别计算块内像素均值,把作为当前图像块中所有像素的预测像素。然后将所有图像块的预测像素连接起来作为辅助信息表示第个块中第行第列像素值的预测误差,最终得到一个误差矩阵。
2024-01-04 10:05:14 1800 1
原创 Matlab——huffmandict()函数
对于给定的符号序列,可以使用huffmanenco()函数将其编码为二进制码字,然后使用huffmandeco()函数将编码后的数据解码回原始符号序列。【哈夫曼编码字典是一个由符号和对应的编码组成的数据结构,可以用于对给定的符号序列进行编码和解码操作。需要注意的是,huffmandict()函数生成的哈夫曼编码字典是针对给定的符号和概率而生成的,因此在解码时需要使用相同的字典。其中,`SYM`是一个表示符号的向量或包含字母数字的向量单元数组,`PROB`是一个表示每个符号出现概率的向量。
2023-12-28 20:25:51 1267 1
原创 Matlab——tabulate()函数
其中,第一列展示的是元素,第二列是出现的次数,第三列是出现的频率(因为A1有一百个元素所以第三列和第二列相同)在使用Huffman编码或者其它压缩方式的时候经常要查询某个元素在相应的数组中出现的次数,即出现的频率。:tabulate的输入参数要求是向量,且必须是single或double类型才可以!可以通过循环来完成这项工作,但是matlab中提供了。tabulate()函数。,使用起来更简单快速。
2023-12-28 17:07:33 1279 1
原创 基于局部相关的分类和自适应编码策略在加密图像中的可逆数据隐藏【2023】with local-correlation-based classification and adaptive....
VRAE
2023-12-23 22:34:47 826 1
原创 Reversible Data Hiding in Encrypted Images Based on Pixel Prediction and Bit-Plane Compression【2020】
为腾出附加数据(要嵌入的信息)空间要进行像素预测和位平面的重排以及压缩。
2023-12-16 21:19:31 951
原创 Reversible data hiding in encrypted images based on pixel prediction and multi-MSB planes...【2021】
RRBE
2023-12-11 21:01:08 962 1
原创 Reversible Data Hiding in Encrypted Images Basedon Multi-MSB Prediction and Huffman Coding【2020】
RRBE
2023-12-08 09:57:37 1097
原创 MSB自适应预测(AMP)
将图像分成的不重叠像素块,所以每个像素块拥有4个像素(被分成八位,也就是用二进制来表示),将它们标注为,如图所示。用于预测,并用作数据载体。根据上式分别获得三个变量,其中返回的是从高位到低位【从左到右依次为87654321位】索引首个不同表示的所在位置。举个例子:从高到低索引,发现()内的不同,其位置属于第五个位置,故dif=5。获得之后,可以计算的值:得到的值之后,将其分解为三位【12345678的八个位置依次表示为000-111表示的预测误差 =LSBs。
2023-12-05 17:18:33 612
原创 [2014]Intriguing properties of neural networks
表示输入图像;表示某一层的激活值;表示正则化中的权重衰减因子表示数据中未训练网络的保留图像集表示第个隐藏单元相关的自然基向量表示随机向量之前的工作隐藏单元的激活 解释为有意义的特征。他们寻找能最大化这个单一特征的激活值的输入图像,该图像满足(或接近最大可达到的值):实验发现,随机向量产生同样的可接解释的语义特性,更正式地说,图片之间存在语义关联。这表明随机基底比自然基底更适合于检查的性质。这对于神经网络能否在坐标系中解开变动因素的概念提出了质疑。
2023-11-25 16:59:21 962
原创 【阅读笔记】机器学习安全攻击与防御机制研究进展和未来挑战2021
机器学习面临的攻击论文阅读笔记仅供学习使用,如有侵权,联系立删!机器学习面临的攻击术语介绍对抗样本为了让模型混淆出错而对原始样本经过精心扰动的样本对抗扰动为使原始样本称为对抗样本而增加的扰动对抗训练使用原始训练集和对抗样本共同训练机器学习模型敌手特指制作对抗样本的攻击者白盒攻击攻击者拥有目标模型全部知识的攻击包括其参数值、模型结构、训练方法、训练数据等.黑盒攻击攻击者仅拥有模型有限知识的攻击例如攻击者通过在训练阶段产生对抗样本进行对抗样本攻击.检测器。
2023-11-22 16:23:04 99 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人