2023MSB位平面蛇形重排和压缩Capacity_RDHEI_Based_on_MSB_Bit-Plane_Serpentine_Rearrangement_and_Compression

 RRBE

仅供个人学习记录,切勿转载和搬运,如有侵权联系立删~

一、创新

设计一种MSB平面的蛇形(类似于z字)重排方案来充分利用整个图像的拓扑相关性。

二、算法框架

首先内容持有者采用蛇形块扫描法重新排列位平面内的比特流,然后在计算明文图像预测误差后使用BSC算法进行压缩,然后根据加密密钥对图像进行加密;数据隐藏者将秘密信息嵌入到加密图像,得到被标记的加密图像。

 三、具体实现过程

A腾出空间

A.1像素预测

使用中值边缘检测器(MED)进行(v,u)位置的像素预测并根据公式得到预测误差:

 如果e\notin [-127,127]则被视为溢出像素,得到相应位置的像素误差之后,将误差转换为8位二进制:

A.2重排位平面和压缩位流

首先将图像分割成均匀尺度调整的块,随后,在每个单独的块内执行比特提取,然后执行比特流的顺序重排,直接看下图。这种重排方式提高了相邻元素之间的相关性,从而提高压缩率。利用位平面蛇形重排技术,实现了特定位的遍历。

得到重拍序列之后,根据重复的数字进行压缩编码,压缩方式具体参考文章第三部分的位平面压缩

原文中给出的例子如下图,其中红色框内是标识错误,绿色框内是正确的编码方式。

A.3腾出空间

完成以上操作后,MSB位平面就得到了冗余空间,所以需要将LSB的比特信息嵌入在压缩位平面的可用空间内,方便后续的嵌入过程。通过将压缩的比特流和未压缩的比特平面级联,形成新的多MSB平面,而空的多LSB平面用零填充。

注意辅助信息的保留,如固定的块规模、溢出像素的数量和位置等。

B图像加密

使用加密密钥K_{en}生成与原始图像相同大小的伪随机矩阵,然后将压缩后的对应的矩阵和伪随机矩阵全部转化为8位二进制序列,进行按位异或得到加密图像,具体的异或计算和加密图像的像素还原如下式:

C数据嵌入

先将秘密信息用密钥K_{s}进行加密,由于LSB中的比特嵌入压缩后的MSB位平面中,所以LSB有额外的空间进行秘密数据替换嵌入,得到标记的图像I_{em}

D数据提取和图像恢复

利用辅助信息和1所持有的密钥进行信息提取和图像恢复即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值