2022霍夫曼编码+权重预测-Efficient RDHE binary image with Huffman encoding and weight prediction

该博客探讨了在二值图像中使用霍夫曼编码和权重预测进行可逆数据隐藏的方法。通过将图像分为黑块、白块和混合块,结合霍夫曼编码和权重预测机制,能够在保持图像恢复质量的同时,提高嵌入数据的容量。研究还涉及图像的预处理、加密、数据嵌入和恢复过程。
摘要由CSDN通过智能技术生成

二值图像,RRBE

背景

Ren H, Lu W, Chen B (2019) Reversible data hiding in encrypted binary images by pixel prediction. Signal Process 165:268–277:提出均匀块和非均匀块的策略,均匀块标记一位进行恢复即可,非均匀块提出T型预测结构,在一个4×4大小的块中最多腾出4bits,虽然Ren等人通过引入t型预测结构为RDH-EBI做出了突出贡献,提供了许 多基本见解,但视觉质量和嵌入能力仍有明显的改进差距

Li F, Zhang L, Wei W (2020) Reversible data hiding in encrypted binary image with shared pixel prediction and halving compression. EURASIP Journal on Image and Video Processing 2020(1):1–21:在Ren方案的基础上,Li等人提出了一种共享像素预测和减半压缩的新方 案。由于在图像分割过程中需要使用大量的辅助信息来保证可逆性,Li等人设 计了一种新的压缩机制,大大减小了辅助信息的大小,从而提高了附加数据的 嵌入能力。此外,Li等人提出了如第二个图所示的分割非均匀块的交叉分割机制, 该机制充分利用了相邻像素,进一步提高了嵌入容量。然而,Li的方案 并没有显著提高预测精度。

 研究目的和解决方法

由于二值图像的像素冗余空间很小,现有的二值图像RDH方案很难在大的嵌入容量和恢复的二值图像的高视觉质量之间取得平衡。为了提供一个有效的解决方案,我们首先将原始二值图像分为三种不同类型的非重叠块,黑块,白色块和混合块。随后,引入霍夫曼编码机制以在所有块中实现大的嵌入容量。由于霍夫曼编码的正确可解码性,在提取秘密数据之后,黑色块和白色块都可以被无损地恢复。此外,权重预测机制的设计,通过一个大面积的像素相关性,可以使混合块得到一个准确预测并能够顺序恢复。

方法框架

该方案的框架主要由内容所有者、数据隐藏者和接收者三部分组成。内容所有者首先将原始图像分成三种互不重叠的块,并对每一块采用霍夫曼编码机制进行记录,以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值