python
文章平均质量分 58
Lntano__y
在这里记录自己的学习历程,并分享给有需要的同学!
展开
-
ros2 rclpy 详解 --创建 python类型节点
它提供了与 ROS 2 系统交互的 API,使开发者能够使用 Python 编写 ROS 2 节点、发布和订阅消息、调用服务、定时器等。rclpy 是 ROS 2 的核心库之一,为 Python 开发者提供了与 ROS 2 系统进行通信的能力。rclpy 是 ROS 2 的 Python 客户端库,提供了创建节点、发布和订阅消息、调用服务、定时器等功能。通过理解和使用 rclpy,可以构建功能强大的 ROS 2 应用程序,并与 ROS 2 系统进行高效的交互。原创 2024-07-28 11:44:43 · 911 阅读 · 0 评论 -
python元组tuple详解
元组是一种不可变的有序数据结构,用于存储一组相关的数据。由于元组的不可变性,它们通常用于存储不需要改变的数据。元组解包是一种非常方便的操作,可以将元组中的元素快速赋值给多个变量。Python 中的元组(tuple)是一种有序的、不可变的数据结构,用于存储一组相关的数据。元组与列表非常相似,但它们最大的区别在于元组一旦创建就不能修改(即不可变),而列表是可变的。不变的数据集合:当你有一组数据不希望被修改时,可以使用元组,例如,函数的参数和返回值。字典键:由于元组是不可变的,因此可以作为字典的键。原创 2024-07-24 16:55:55 · 356 阅读 · 0 评论 -
python assert详解
assert 是一个有用的调试工具,帮助开发者在开发阶段捕捉潜在的逻辑错误和不一致性。对于关键的输入验证,应使用异常处理机制,以确保程序在任何环境下都能正常运行。assert 是 Python 中用于调试和验证程序中条件的一个重要语句。它可以在程序中某些关键点检查条件是否为真,如果条件为假,则抛出 AssertionError 异常并终止程序执行。message:(可选)在抛出 AssertionError 时输出的错误信息,用于描述断言失败的原因。在这种模式下,所有的断言都将被跳过,不会进行条件检查。原创 2024-07-19 16:48:59 · 844 阅读 · 0 评论 -
from torch.utils.data import Dataset详解
torch.utils.data.Dataset 是 PyTorch 数据加载库中的一个重要类,用于定义自定义数据集。通过继承 Dataset 类,可以创建自己的数据集类,并实现数据的加载和处理逻辑。通过继承和实现 torch.utils.data.Dataset 类,可以灵活地创建自定义数据集,并与 DataLoader 结合使用,实现高效的数据加载和处理。(self, idx):支持索引操作,返回指定索引的样本。继承 Dataset 类,并实现。方法中加载文件数据。2.1 导入相关模块。原创 2024-07-19 16:38:23 · 581 阅读 · 0 评论 -
python装饰器@详解
Python 的装饰器(decorators)是一种强大的编程工具,用于修改或增强函数或方法的行为,而无需修改函数或方法的源代码。在上面的例子中,my_function 实际上被 decorator2 和 decorator1 装饰,装饰顺序从内到外,即 decorator2 包裹 decorator1。装饰器本质上是一个函数,它接受另一个函数作为参数,并返回一个新函数。装饰器 是一个函数,用于修改或增强另一个函数的行为。带参数的装饰器 需要通过装饰器工厂模式来实现。使用 @ 符号将装饰器应用到函数上。原创 2024-07-19 12:45:00 · 518 阅读 · 0 评论 -
python self详解
在 Python 中,self 是一个约定俗成的名称,用于类的方法中,表示当前对象的实例。它并不是 Python 的关键字,而是一个约定,可以使用其他名称,但使用 self 是一种编程规范,使代码更具可读性和一致性。self 代表类的实例,允许在类的方法中访问该实例的属性和其他方法。它是实例对象的一个指针,使得类的方法可以访问和修改实例的状态。self 用于访问和修改实例的属性,以及调用其他实例方法。在类的方法中,self 用于访问和修改实例属性。在类的方法中,self 可以用来调用其他方法。原创 2024-07-19 12:34:05 · 1790 阅读 · 0 评论 -
python with关键字详解
Python 的 contextlib 模块提供了一些工具,可以更方便地创建上下文管理器。context_variable 是一个可选的变量,用于接收 context_expression 返回的对象。方法或使用 contextlib 模块,我们可以轻松创建和使用自定义的上下文管理器,从而使代码更加简洁和健壮。context_expression 是一个返回上下文管理器(context manager)的表达式。with 语句通过上下文管理器简化了资源管理和清理工作,确保资源在使用后被正确释放或清理。原创 2024-07-19 10:51:08 · 268 阅读 · 0 评论 -
torch.no_grad()详解
torch.no_grad() 是一个用于禁用梯度计算的上下文管理器,适用于模型评估、推理等不需要梯度计算的场景。在使用 torch.no_grad() 时,通常还会将模型设置为评估模式(model.eval()),以确保某些层(如 dropout 和 batch normalization)在推理时的行为与训练时不同。torch.no_grad() 可以嵌套使用,内层的 torch.no_grad() 仍然会禁用梯度计算。进入 torch.no_grad() 上下文,临时禁用梯度计算。原创 2024-07-19 10:46:01 · 1382 阅读 · 0 评论 -
from torch.utils.data import TensorDataset 详解
这里,x 是一个形状为 (100, 10) 的张量,表示 100 个样本,每个样本有 10 个特征。y 是一个形状为 (100,) 的张量,表示 100 个样本的标签,取值在 0 和 1 之间(二分类问题)。在这个实例中,我们创建了一个包含 100 个样本的数据集,每个样本有 10 个特征,并将其划分为批次,每个批次包含 20 个样本。这里,我们创建了一个数据加载器 train_dataloader,每个批次包含 20 个样本,并且在每个 epoch 结束后会打乱数据(shuffle=True)。原创 2024-07-19 10:01:38 · 479 阅读 · 0 评论 -
python len 详解
len 函数的使用非常简单,只需将目标对象作为参数传递给它即可。无论是计算字符串的字符数、列表中的元素数、元组中的元素数、字典中的键值对数,还是集合中的元素数,len 函数都能快速、准确地返回结果。len 是 Python 中的一个内置函数,用于返回对象的长度。该函数的常见使用对象包括字符串、列表、元组、字典、集合等。原创 2024-07-19 09:39:08 · 327 阅读 · 0 评论