电商推荐系统(一)

数据生命周期

大数据处理流程

在这里插入图片描述
在这里插入图片描述

项目系统结构

在这里插入图片描述
在这里插入图片描述

数据源

商品信息 products.csv
在这里插入图片描述
用户评分信息 ratings.csv
在这里插入图片描述

主要数据模型

在这里插入图片描述

统计推荐模块

在这里插入图片描述

历史热门商品统计

统计所有历史数据中每个商品的评分数
select productId, count(productId) as count from ratings group by productId order by count desc
RateMoreProducts
RateMoreProducts 数据结构:productId,count

近期热门商品统计

统计每月的商品评分个数,就代表了商品近期的热门度
select productId, score, changeDate(timestamp) as yearmonth from ratings
ratingOfMonth
select productId, count(productId) as count ,yearmonth from ratingOfMonth group by yearmonth, productId order by yearmonth desc,count desc
RateMoreRecentlyProducts
changDate :UDF函数,使用 SimpleDateFormat 对 Date 进行格式转化,转化格式为“yyyyMM”
RateMoreRecentlyProducts 数据结构:productId,count,yearmonth

商品平均评分统计

select productId, avg(score) as avg from ratings group by productId order by avg desc
AverageProducts
AverageProducts 数据结构:productId,avg

基于LFM的离线推荐模块

用ALS算法训练隐语义模型(LFM)

在这里插入图片描述

在这里插入图片描述

基于模型的实时推荐模块

计算速度要快

结果可以不是特别精确

有预先设计好的推荐模型

推荐优先级计算

基本原理:用户最近一段时间的口味是相似的
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

其他形式的离线相似推荐

怎样找到商品 A 的相似商品?—— 与A有相同标签的商品,喜欢A的人同样喜欢的商品
根据 UGC 的特征提取 —— 利用TF-IDF算法从商品内容标签中提取特征
根据行为数据的相似度计算—— Item-CF:根据行为数据,找到喜欢了商品A的用户,同时喜欢了哪些商品,喜欢的人重合度越高相似度就越大

基于内容的推荐

在这里插入图片描述

基于物品的协同过滤推荐

在这里插入图片描述

混合推荐

在这里插入图片描述

本教程为官方授权出品 如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。 量身定制打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。 整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。 适合人群: 1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员 2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员 3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员 4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员
1、学会各类开发软件安装、项目导入以及项目发布,含项目源码,需求文档,配套软件等 2、该项目主要功能完善,主要用于简历项目经验丰富,以及毕业设计或者二次开发 3、提供项目源码,设计文档、数据库sql文件以及所有配套软件,按照教程即可轻松实现项目安装部署 本课程为素材版,需要实战版的同学可以点击如下链接: 项目实战课程:代码视频讲解版如下 java项目实战之电商系统全套(前台和后台)(java毕业设计ssm框架项目) https://edu.csdn.net/course/detail/25771 java项目之oa办公管理系统(java毕业设计) https://edu.csdn.net/course/detail/23008 java项目之hrm人事管理项目(java毕业设计) https://edu.csdn.net/course/detail/23007 JavaWeb项目实战之点餐系统前台 https://edu.csdn.net/course/detail/20543 JavaWeb项目实战之点餐系统后台 https://edu.csdn.net/course/detail/19572 JavaWeb项目实战之宿舍管理系统(Java毕业设计含源码) https://edu.csdn.net/course/detail/26721 JavaWeb项目实战之点餐系统全套(前台和后台) https://edu.csdn.net/course/detail/20610 java项目实战之电子商城后台(java毕业设计SSM框架项目) https://edu.csdn.net/course/detail/25770 java美妆商城项目|在线购书系统(java毕业设计项目ssm版) https://edu.csdn.net/course/detail/23989 系统学习课程: JavaSE基础全套视频(环境搭建 面向对象 正则表达式 IO流 多线程 网络编程 java10 https://edu.csdn.net/course/detail/26941 Java Web从入门到电商项目实战挑战万元高薪(javaweb教程) https://edu.csdn.net/course/detail/25976其他素材版(毕业设计或课程设计)项目:点击老师头像进行相关课程学习
微信小程序系统教程[初级阶段],微信小程序0基础学起,讲解微信小程序开发的基础知识。 微信小程序系统教程共有“微信小程序系统教程[初级阶段]”、“微信小程序系统教程[中级阶段]——核心技术”、“微信小程序系统教程[阶段]客服消息+微信支付+九宝电商系统”。 “微信小程序系统教程[阶段]全套课程”包含: 1.微信小程序系统教程[阶段]_客服消息 2.微信小程序系统教程[阶段]_微信支付 3.微信小程序系统教程[阶段]_九宝电商系统 学习“微信小程序系统教程[阶段]”要求有微信小程序的基础。建议先学习“微信小程序系统教程[初级阶段]”、“微信小程序系统教程[中级阶段]”,后在报名“微信小程序系统教程[阶段]”。 阶段讲解的客服消息,是针对小程序的。后台程序用接近底层的技术,没有使用三方技术。这样降低同学们学习成本。 微信支付,这部分课程很有难度,要求同学们认真听讲,有不会的技术问题可以请教老师。购买课程后请联系老师,提供单号,给你源程序。 九宝电商系统是一套十分适和学习、项目的课程。既可以系统的学习微信小程序相关知识,还可以修改后上线。 “微信小程序系统教程[中级阶段]——核心技术”重点讲解微信小程序事件、组件、API 微信小程序系统教程[初级阶段],微信小程序0基础学起,讲解微信小程序开发的基础知识。 购买课程的同学,可赠送就九宝老师编写的《微信小程序开发宝典》。 购课请咨询qq2326321088
熟悉项目开发过程中SSM框架、JSP、Mysql使用,知道各技术之间的如何衔接; 考虑到部分学生只需要学习前台(买家)或是后台(后台),故将电商系统分为电商系统前台和电商系统后台两个项目, 当前课程包含电商系统前台和电商系统后台 该课程主要涉及到的技术有:  项目涉及的技术:  1、前端:jsp、css、javascript、jQuery(js框架)、bootstrap框架  2、后台:Spring MVC、Spring、Mybatis框架、javaMail进行邮件发送、jstl 、jstl自定义分页标签、代码生成器等  3、数据库:Mysql  4、服务器:Tomcat 项目开发涉及的功能: 1、项目以及数据库搭建 2、用户登录、退出 3、用户注册、邮件发送、以及用户信息激活 4、首页商品信息页面搭建以及查询功能实现 5、查询商品明细 6、加入商品至购物车、删除、更新、清除购物车商品信息 7、确认订单信息 8、订单页面搭建以及下订单功能实现 9、查询我的购物车以及订单信息 10、商品明细查看,商品修改,商品下架 11、商品类型管理 12、订单管理 13、代码机器人使用等等 其他实战项目: java项目实战之电商系统全套(前台和后台)(java毕业设计ssm框架项目) https://edu.csdn.net/course/detail/25771 java项目之oa办公管理系统(java毕业设计) https://edu.csdn.net/course/detail/23008 java项目之hrm人事管理项目(java毕业设计) https://edu.csdn.net/course/detail/23007 JavaWeb项目实战之点餐系统前台 https://edu.csdn.net/course/detail/20543 JavaWeb项目实战之点餐系统后台 https://edu.csdn.net/course/detail/19572 JavaWeb项目实战之宿舍管理系统(Java毕业设计含源码) https://edu.csdn.net/course/detail/26721 JavaWeb项目实战之点餐系统全套(前台和后台) https://edu.csdn.net/course/detail/20610 java项目实战之电子商城后台(java毕业设计SSM框架项目) https://edu.csdn.net/course/detail/25770 java美妆商城项目|在线购书系统(java毕业设计项目ssm版) https://edu.csdn.net/course/detail/23989 系统学习课程: JavaSE基础全套视频(环境搭建 面向对象 正则表达式 IO流 多线程 网络编程 java10 https://edu.csdn.net/course/detail/26941 Java Web从入门到电商项目实战挑战万元高薪(javaweb教程) https://edu.csdn.net/course/detail/25976 其他素材版(毕业设计或课程设计)项目:点击老师头像进行相关课程学习
如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。适合人群:1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页