Ai java项目快速开发

火山方舟快速开发指南 | 三步完成AI项目集成

前言:为什么选择火山方舟?

火山方舟提供一站式AI模型集成方案,开发者无需关注底层实现,通过简单API调用即可快速集成多种主流AI模型。本文将手把手教你通过Java SDK完成项目集成。


一、环境配置篇

1.1 添加SDK依赖

xml

复制

<!-- pom.xml 添加依赖 -->
<dependency>
    <groupId>com.volcengine</groupId>
    <artifactId>volcengine-java-sdk-ark-runtime</artifactId>
    <version>0.1.152</version>
</dependency>

运行 HTML

1.2 配置参数封装

java

复制

@Configuration
@ConfigurationProperties(prefix = "ai")
@Data
public class AiConfig {
    private String apiKey; // 从火山控制台获取
    
    @Bean
    public ArkService arkService() {
        ConnectionPool pool = new ConnectionPool(5, 1, TimeUnit.SECONDS);
        Dispatcher dispatcher = new Dispatcher();
        
        return ArkService.builder()
                .dispatcher(dispatcher)
                .connectionPool(pool)
                .baseUrl("your_endpoint") // 替换为实际接入点
                .apiKey(apiKey)
                .build();
    }
}

配置说明

  • baseUrl:根据业务地域选择接入点

  • apiKey:火山控制台->密钥管理获取

  • 连接池参数按业务流量调整


二、核心调用方式

2.1 同步请求模式(完整返回)

java

复制

public String getFullResponse(String question) {
    List<ChatMessage> messages = new ArrayList<>();
    messages.add(newMessage(ChatMessageRole.SYSTEM, "你是人工智能助手"));
    messages.add(newMessage(ChatMessageRole.USER, question));
    
    ChatCompletionRequest request = ChatCompletionRequest.builder()
            .model("your_model_id") // 替换模型ID
            .messages(messages)
            .build();
    
    return arkService.createChatCompletion(request)
            .getChoices().get(0).getMessage().getContent();
}

2.2 流式响应模式(实时输出)

java

复制

public void streamResponse(String question) {
    List<ChatMessage> messages = new ArrayList<>();
    messages.add(newMessage(ChatMessageRole.USER, question));
    
    service.streamChatCompletion(
            ChatCompletionRequest.builder()
                    .model("your_model_id")
                    .messages(messages)
                    .build()
    ).blockingForEach(response -> {
        if (!response.getChoices().isEmpty()) {
            System.out.print(response.getChoices().get(0).getDelta());
        }
    });
}

模式对比

模式响应速度适用场景资源占用
同步请求较慢需要完整结果
流式响应实时长文本生成场景

三、最佳实践技巧

3.1 上下文对话实现

java

复制

// 维护对话历史
List<ChatMessage> chatHistory = new ArrayList<>();

public String chatWithContext(String newQuestion) {
    // 添加历史记录
    chatHistory.add(newMessage(USER, newQuestion));
    
    // 保留最近的3轮对话
    if(chatHistory.size() > 6) {
        chatHistory = chatHistory.subList(chatHistory.size()-6, chatHistory.size());
    }
    
    // 发起请求时携带完整历史
    return doChat(chatHistory); 
}

3.2 消息角色说明

java

复制

/* 三种核心角色类型 */
ChatMessageRole.SYSTEM   // 系统指令(设定AI行为)
ChatMessageRole.USER     // 用户输入
ChatMessageRole.ASSISTANT // AI历史回复

3.3 工具类封装

java

复制

@Service
public class AiManager {
    @Resource private ArkService arkService;
    
    public String doChat(List<ChatMessage> messages) {
        ChatCompletionRequest request = ChatCompletionRequest.builder()
                .model("deepseek-v3-241226")
                .messages(messages)
                .build();
        
        return arkService.createChatCompletion(request)
                .getChoices().get(0).getMessage().getContent();
    }
}

如何让ai 可以根据上下文回答呢?

注意:维护好用户这一次消息所有的内容 (维护一个消息列表)问答时候全部给ai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值