火山方舟快速开发指南 | 三步完成AI项目集成
前言:为什么选择火山方舟?
火山方舟提供一站式AI模型集成方案,开发者无需关注底层实现,通过简单API调用即可快速集成多种主流AI模型。本文将手把手教你通过Java SDK完成项目集成。
一、环境配置篇
1.1 添加SDK依赖
xml
复制
<!-- pom.xml 添加依赖 --> <dependency> <groupId>com.volcengine</groupId> <artifactId>volcengine-java-sdk-ark-runtime</artifactId> <version>0.1.152</version> </dependency>
运行 HTML
1.2 配置参数封装
java
复制
@Configuration @ConfigurationProperties(prefix = "ai") @Data public class AiConfig { private String apiKey; // 从火山控制台获取 @Bean public ArkService arkService() { ConnectionPool pool = new ConnectionPool(5, 1, TimeUnit.SECONDS); Dispatcher dispatcher = new Dispatcher(); return ArkService.builder() .dispatcher(dispatcher) .connectionPool(pool) .baseUrl("your_endpoint") // 替换为实际接入点 .apiKey(apiKey) .build(); } }
配置说明:
-
baseUrl
:根据业务地域选择接入点 -
apiKey
:火山控制台->密钥管理获取 -
连接池参数按业务流量调整
二、核心调用方式
2.1 同步请求模式(完整返回)
java
复制
public String getFullResponse(String question) { List<ChatMessage> messages = new ArrayList<>(); messages.add(newMessage(ChatMessageRole.SYSTEM, "你是人工智能助手")); messages.add(newMessage(ChatMessageRole.USER, question)); ChatCompletionRequest request = ChatCompletionRequest.builder() .model("your_model_id") // 替换模型ID .messages(messages) .build(); return arkService.createChatCompletion(request) .getChoices().get(0).getMessage().getContent(); }
2.2 流式响应模式(实时输出)
java
复制
public void streamResponse(String question) { List<ChatMessage> messages = new ArrayList<>(); messages.add(newMessage(ChatMessageRole.USER, question)); service.streamChatCompletion( ChatCompletionRequest.builder() .model("your_model_id") .messages(messages) .build() ).blockingForEach(response -> { if (!response.getChoices().isEmpty()) { System.out.print(response.getChoices().get(0).getDelta()); } }); }
模式对比:
模式 | 响应速度 | 适用场景 | 资源占用 |
---|---|---|---|
同步请求 | 较慢 | 需要完整结果 | 低 |
流式响应 | 实时 | 长文本生成场景 | 中 |
三、最佳实践技巧
3.1 上下文对话实现
java
复制
// 维护对话历史 List<ChatMessage> chatHistory = new ArrayList<>(); public String chatWithContext(String newQuestion) { // 添加历史记录 chatHistory.add(newMessage(USER, newQuestion)); // 保留最近的3轮对话 if(chatHistory.size() > 6) { chatHistory = chatHistory.subList(chatHistory.size()-6, chatHistory.size()); } // 发起请求时携带完整历史 return doChat(chatHistory); }
3.2 消息角色说明
java
复制
/* 三种核心角色类型 */ ChatMessageRole.SYSTEM // 系统指令(设定AI行为) ChatMessageRole.USER // 用户输入 ChatMessageRole.ASSISTANT // AI历史回复
3.3 工具类封装
java
复制
@Service public class AiManager { @Resource private ArkService arkService; public String doChat(List<ChatMessage> messages) { ChatCompletionRequest request = ChatCompletionRequest.builder() .model("deepseek-v3-241226") .messages(messages) .build(); return arkService.createChatCompletion(request) .getChoices().get(0).getMessage().getContent(); } }
如何让ai 可以根据上下文回答呢?
注意:维护好用户这一次消息所有的内容 (维护一个消息列表)问答时候全部给ai