城市监控视频数据量呈现指数级增长态势,成为名副其实的海量数据。普通视频监控的基本功能已经无法满足现实需求。视频图像大数据平台,高效地使用这些视频数据,对视频数据进行深度挖掘,提供有价值的视频结构化描述、视频浓缩,基于视频内容进行智能挖掘,满足视频实战应用需求。
视频图像大数据平台,包括视频联网共享系统、智能视频分析系统、大数据中心系统、GIS数据可视化系统、平台运维系统。
GIS数据可视化系统
GIS数据可视化系统通过直观、生动、可交互、可个性化定制的数据可视化图表,展示数据潜在的趋势和内在的特性,赋予用户极好的数据体验。GIS数据可视化系统,借助于图形化手段展示大数据分析结果,使数据清晰有效地表达,使人们快速高效的理解并使用,集成了数据采集、统计、分析、呈现等多环节。
GIS数据可视化系统,基于GIS地图实现实时合成作战指挥和数据研判。实时合成作战指挥,实现各类关注数据的调取和碰撞分析,提供及时有效分析数据,包括重大刑事案件侦破、重大追捕行动、重大事故处置、重大保卫工作、重大清查行动等。数据研判,用于侦破各种刑事案件,包括视频浓缩、数据检索、轨迹跟踪、时空对碰、查询统计、预测分析等。
视频监控是安全防范系统的重要组成部分,监控系统包括前端摄像机、传输线缆、视频监控平台。视频监控以其直观、准确、及时和信息内容丰富而广泛应用于许多场合。视频监控主要包括城市公共区域建设的“天网”系统、社会视频监控系统、卡口监控系统。视频监控采集的视频图像数据具有极高的价值。当发生案件时,可以运用视频监控发现线索、锁定目标、证实犯罪,作为新的侦查途径。
视频识别主要包括视频信息的采集及传输、视频检测和分析处理三个环节。通过智能分析模块,对视频画面进行识别、检测、分析,对异常情况进行目标和轨迹标记。智能分析模块基于人工智能和模式识别原理的算法。
深度学习是机器学习的一个子类,是机器学习众多算法中的一种,是拥有多个隐藏层的神经网络。深度学习可以理解为多层神经网络,是一种学习的模式,采用具有深度的模型进行学习。深度学习具有其他算法不具备的显著优势,特别在AI领域的应用中,使得深度学习解决问题的效果尤为突出,广泛应用于语音识别、图像识别、文本理解等众多领域。
机器学习是让机器从大量样本数据中自动学习其规律,并根据学习到的规律预测未知数据的过程。机器学习的目标是发现数据中暗藏的规律,由此对未知进行预测。这个过程要通过学习来实现,学习用到的材料则是大数据。
机器学习通过人工智能来分析、探索和预测趋势,并根据过去的变化预测未来的趋势。通过经典的机器学习算法,为客户提供智能应用程序,包括频繁模式挖掘、聚类、分类、推荐引擎(获得用户行为并从中发现用户可能喜欢的事物)、频繁子项挖掘(利用一个项集,如查询记录和购物目录,去识别经常一起出现的项目)。
人工智能是计算机科学与技术专业的一门重要的专业课程,运用计算机模拟和延伸人脑功能,模仿人脑所从事的推理、识别、理解、设计、学习、思考等思维活动,以此解决预测、规划等需要人类专家才能处理的复杂问题。人工智能关键技术包括专家系统、自然语言理解、人工神经网络。
基于沃达德大数据平台,通过对海量数据采集、处理、存储、分析和数据挖掘,根据数据的特性,采用合适的可视化方式,将数据直观地展现出来,以帮助人们认识数据、理解数据,同时找出包含在海量数据中的规律或者信息,预测未来发展趋势,进行智能化决策分析,使得数据资产成为核心竞争力。
#视频监控#视频识别#视频分析#数据可视化#