1. TensorFlow的矩阵操作
接下来你要学到的知识点有
- 如何创建一个矩阵
- 会学到张量的阶和形态是什么?
- 如何创建一个一维到四维的张量
- 如何读懂一个4维张量
- 矩阵的加法,减法
- 矩阵的乘法
- 可逆矩阵
- 转置矩阵
- 对角矩阵
1. 定义一个矩阵
# 这段代码的目的是导入tensorflow包
# 为了以后调用tensorflow包中的对象、成员变量和成员函数时更方便,我们在import tensorflow后面加上了as tf
# 也就是说tensorflow就相当于as
import tensorflow as tf
# 导入os的原因,我已经在上一篇文章中说了,就不做多少阐述了
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# constant 是一个常量,值是不能够改变的。
# matrix_A 可以把它看成一个节点,这个节点里面存放的是一个数组
matrix_A = tf.constant([[90, 80, 70], [98, 95, 87]])
# 如果我们在这里打印matrix_A,结果如下
# Tensor("Const:0", shape=(2, 3), dtype=nt32)
# tensor(张量) shape-表示2*3的矩阵
# dtype == data type 数据类型
# 他返回了一个对象
# 这条语句定义了一个sess变量,它包含一个TensorFlow的会话(session)对象,我们现在不必深究会话是什么,可以简单地把会话理解为一个对象,有了这个对象,我们就可以将矩阵打印出来了
sess = tf.Session()
# sess.run 就是将matrix_A的数据运行出来,他返回一个矩阵
run_matrix = sess.run(matrix_A)
print(run_matrix)
sess.close()
执行结果
我们已经知道了如何创建了一个矩阵
不妨停下来思考一下,我们用数组的方式来表示一个2维矩阵,思考一下,为什么要使用数组?他可以表达怎么的意义,如果二维矩阵不支持表达二维的意义怎么办?3维矩阵我们又应该怎么创建呢?他们表达的意义又会是什么呢?
相信你已经可以创建一个三维矩阵
多维数组可以用来表达数学上很难表达的多维数据。实际上,我们后面是会遇到多维的情况的,例如,一张彩色图片的数据,包含每行每列上的像素,每个像素又包含它的颜色值,颜色值一般用R、G、B(红、黄、蓝)3个“通道”来表达,那么这其中已经至少包含了“行”、“列”、“通道”3个维度。对于这种情况,我们就需要用三维数组来表示图片数据。
需要注意的是,不要把向量的维度和数组的维度这两个概念搞混了。向量中有几个数字,我们就把它叫作几维的向量,其中每一位数字(严格的说应该是数字所处的位置或顺序)叫作其中的一维。而多维数组中,除了最后一维是一个一维数组(也就是只包含数字项)外,其他每一维都是包含数组作为内容项的,并且维度越高,包含的内容项的维度也越高,例如,二维数组的第一维包含的内容项都是一维数组,而三维数组包含的内容项都是一个个二维数组
如图所示,这就是一个三维的数组
你可以这样记忆,左边有几个括号就是几维
这个三维数组可以用来表达两个班级的学生的总成绩(虽然学生人数少了一些),也就是说除了“人”、“分数类型”外,又引入了一个“班级”作为第一个维度。第一个维度包含了两个班级,第二个维度是两位学生,第三个维度中包含了3个数字,分别代表语文成绩,英语成绩,数学成绩3个分数;这个三维数组可以称为“2×2×3的三维数组
2. 张量的阶和形态
张量主要是用来存放节点的输出数据的,其中存放的数据可以是一个标量(也就是一个数),也可以是一个向量(一组数),还可以是一个矩阵(二维的数组),甚至可以是用多维数组来表达的数据
TensorFlow中用“形态”(shape)来表达在张量中存储的数据的形式。
在TensorFlow中,张量的形态用一个数组来表示,这个数组中有几个数字,我们就说这个张量是几“阶”(rank)的张量。那么可以很容易地看出,标量是0阶的,向量是1阶的,二维数组是2阶的,三维数组是3阶的,以此可以类推到更多维度的数组
就如同上面的代码
print(tf.constant([[90, 80, 70], [98, 95, 87]]))
他打印了Tensor("Const:0", shape=(2, 3), dtype=int32)
其中tensor–张量, shape–就是形态
张量中存储的是这个二维数组,它的形态是[2, 3],所以他是2阶的,可以看出,形态本身也是一个一维数组,其中的2和3分别代表这个矩阵两个维度(行和列)上的项数
2020年7月27日:更加的理解了张量和形态,如何定义一个1维到4维的张量
# 先定义一个 1 维的张量
x = tf.constant(
[1 , 2]
)
# 当我们通过查看这个张量的形态
# shape [2], 一维数组中的元素有一个, 说明这个张量是一个 1 为的数组,且阶为1
# 定义一个 2 维的张量
x = tf.constant(
[[1, 2], [1, 2]]
)
# 当我们通过查看这个张量的形态
# shape [2 2] 一维数组有2个元素, 说明是一个2维的张量, 且 2 * 2 是一个的矩阵(行*列)
# 定义一个 2 维的张量
x = tf.constant(
[[1, 2], [1, 2], [1, 3]]
)
# shape [3 2] 一维数组的元素有2个,说明这个张量也是一个2维的张量, 且 3 * 2 的矩阵
# 定义一个 3 维的张量
x = tf.constant(
[[[1, 2], [1, 2]], [[1, 2], [1, 2]], [[1, 2]