假文盲的启发

 漫画主要讲了这样一个故事,在一个寒冷的冬天,一位瘦小的母亲正抱着一位哇哇大哭的孩子,在站在母了上车处。而后面又来了四个大男人,一下子就把那位真正的母亲挤了出去。那位母亲疑惑的看着那几个人。只见第一个男人着一个大肚子,一着领带,穿着一双擦的闪闪发亮皮鞋,头发核的一丝不苟,像一个有学问的商人,他怎么会不识字呢?再看第二个人,只见他穿着军大衣,身材高大,像一个受过训练的军人,他难道不懂尊老爱幼这些道理吗?在看第三个人,他虽然身体矮小,但非常强壮,像一名退伍军人,他可能会想,我以前在战场上奋勇杀敌,为祖国杀死了多少敌人,立上了多大的功劳,享受一下不行吗?还有第四个人,他带着口罩,仿佛一位白领,又好像是一位有经验的医生。看着这些人的样子,都是有学问的人。可他们为什么无视“母子上车处”这五个大字呢。看他们的眼睛,不是斜着,就是眯着,好像故意不去看字。
     这四个大男人,难道是文盲吗?不,不是,他们都是有文化的人。可他们如果不是文盲,又怎会不认识“母子上车处”这几个字呢?原来,他们都是“假文盲”是无视社会公德的人。他们的外表看起来很干净,可实际上他们的内心是无比丑陋的。这种人虽然有文化,有知识,可却没有素质。他们是“德盲”,应该受到社会的唾弃。
   其实在我们的身边也有许多“假文盲”。比如,社会上饱受非议的“中国式过马路”。所谓“中国式过马路”,就是过马路不用看红绿灯,只要凑够一小撮人就可以闯过马路,这不就是现实版的“穿越火线”吗?有一个栏目组做了一个调查,他们在市区最忙的十字路口等候,等了一个半小时,有两千余人经过这里,竟没有一个人遵守“红灯停,绿灯行”。他们都是“假文盲”。还有在禁上吸烟的公共场合吸烟。在禁止停车的地方停车等现象屡见不鲜。
   在我的生活中,我们不以恶小而为之,不以善小而不为。从身边小事做起遵守社会公德,讲文明,树新风。这样我们才能有一个和谐美好社会。让我们行动起来,做一个有文化、有素养的人。让“假文盲”不复存在!
动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值