目录
一、题目描述
列表 arr 由在范围 [1, n] 中的所有整数组成,并按严格递增排序。请你对 arr 应用下述算法:
1、从左到右,删除第一个数字,然后每隔一个数字删除一个,直到到达列表末尾。
2、重复上面的步骤,但这次是从右到左。也就是,删除最右侧的数字,然后剩下的数字每隔一个删除一个。
3、不断重复这两步,从左到右和从右到左交替进行,直到只剩下一个数字。
给你整数 n ,返回 arr 最后剩下的数字。
示例 1:
输入:n = 9
输出:6
解释:
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr = [2, 4, 6, 8]
arr = [2, 6]
arr = [6]
示例 2:
输入:n = 1
输出:1
提示:
1 <= n <= 109
二、思路讲解
这道题只要求输出最后剩下的数字,所以大概率是不用构造这样的数组的,只需要找到规律即可。
首先我们可以发现,每次消除过后,序列都还是一个等差序列,并且公差变为原来的两倍、数量变为原来数量整除2,那么按照这样的思路,我们找到还剩一个数字的时候,等差数量的a1就可以了。
我们知道如果从左往右删除,无论怎么删,首项都是会被删掉的,删除后,新的等差数列的首项=原来首项+原来公差;而如果从右往左删除,如果数字数量为奇数,则首项会被删除,数字数量为偶数,首项就不会被删除。 我们可以根据这个规律求出每次的首项。
三、Java代码实现
class Solution {
public int lastRemaining(int n) {
//删除次数、公差、数字数量、首项
int k=0, step=1, cnt=n, a1=1;
//如果只剩一个数字,就跳出循环
while(cnt > 1){
if(k%2 == 0){ //如果是从左往右删,首相会被删掉
a1 = a1 + step;
}else{ //如果从右往左删
a1 = cnt%2==0 ? a1 : (a1+step);
}
step = step * 2;
cnt = cnt / 2;
k++;
}
return a1;
}
}
四、时空复杂度分析
时间复杂度: O(logn) n为数组长度,每次长度会减半
空间复杂度: O(1) 仅使用了几个变量
五、代码优化
可以将代码中的乘2和除2改为移位运算,提高效率。
step = step << 1;
cnt = cnt >> 1;