气候学数据学习记录

一.各类常规气候数据总览

参见Data discovery guided by experts | Climate Data Guide (ucar.edu)

二.根据我的研究方向获取数据集

我主要探索两个板块

1.Atmospheric Reanalysis: Overview & Comparison Tables

Atmospheric Reanalysis: Overview & Comparison Tables | Climate Data Guide (ucar.edu)

该页面首先对再分析数据集是什么做出解释:

一种为气候监测和研究生成数据集的系统方法。再分析是通过不变(“冻结”)的数据同化方案和模型创建的,该方案和模型在分析期间每 6-12 小时提取一次所有可用的观测值。这个不变的框架提供了每个时间步长的气候状态的动态一致估计。这个框架的一个组件确实有所不同,那就是原始输入数据的来源。这是不可避免的,因为观测网络不断变化,包括但不限于无线电探空仪、卫星、浮标、飞机和船舶报告。目前,每个时间步长大约提取 7-9 百万个观测值。在每个再分析产品的持续时间内,不断变化的观察组合会产生人为的变异性和虚假趋势。尽管如此,事实证明,如果谨慎使用,各种再分析产品非常有用。

然后阐述了再分析数据集的优点和限制:

优点主要在于长时间和大空间尺度稳定的空间分辨率以及丰富的变量,便于气候分析运算。

限制在于再分析带来的偏差,特别强调了“应极其谨慎地使用与水文循环相关的诊断变量,例如降水和蒸发”。

最后对再分析数据集进行简明分类:

我们将再分析工作描述为第一代(例如 NCEP-NCAR 和 NCEP-DOE 的初始再分析工作)和第二代 (ERA40,JRA25) 部分对应于它们不断进化的吸收全套可用卫星辐射的能力。例如,NCEP-NCAR 和 NCEP-DOE 再分析不会同化海洋上的卫星水蒸气通道,而后续工作会同化。第 3 代工作,例如 ERAIMERRACFSR,使用了更复杂的数据同化方法(例如分析增量和 4D-Var)和模型,并再次解决了在第 2 代再分析工作中发现的问题。

根据表格筛选获取我需要的数据集:

1943-2022年10m风场数据

目前符合条件的只有ERA5数据集,涉及到ERA5数据在NCL内的处理以及气候学中对风场数据的处理方法我会另开一篇。

2.Climate Indices

Climate Indices | Climate Data Guide (ucar.edu)

概念阐述:

气候指数是用于描述地球物理系统特征(如环流模式)的简单诊断量。它们可以监测干旱、厄尔尼诺南方涛动(ENSO)事件、风模式、气候变异的内部模式以及极端事件,如野火和热浪。

与我的专业相关的:

circulation,climate indices,ENSO,Nino 3.4 index,NINO_SST

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值