Floyd解决最短路径

Floyd算法解决最短路径问题

时间复杂度O(n³)
可以解决小规模数据,数组中记录两个结点之间的最短距离,实现多次输出,对于负边权问题也适合,但不适用于带有负环的图

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>

using namespace std;

#define MAX 0x3f3f3f3f
#define N 1005

//n为结点数,m为边数,Q为查询次数
int n, m, Q;
int a[N][N];//邻接矩阵

void floyd()
{
    //注意循环层数之间的关系
    for (int k = 1; k <= n; k++)
    {
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                //i经过k到j的距离若比当前记录的i到j的距离短则更新
                a[i][j] = min(a[i][j], a[i][k] + a[k][j]);
            }
        }
    }
}

int main()
{

    int num1, num2, num3;
    scanf("%d %d %d", &n, &m, &Q);
    memset(a, 0x3f, sizeof a);//距离初始化为MAX
    for (int i = 1; i <= n; i++)
    {
        a[i][i] = 0;//自己到自己的距离为0
    }
    for (int i = 0; i < m; i++)
    {
        scanf("%d %d %d", &num1, &num2, &num3);
        if (num3 < a[num1][num2])//解决重边问题
            a[num1][num2] = num3;//有向图
    }
    
    floyd();//函数调用

    while (Q--)
    {
        scanf("%d %d", &num1, &num2);
        //可以解决负权边问题
        //由于负权边存在,大于MAX/2即为不可达
        if (a[num1][num2] > MAX / 2) printf("impossible\n");
        else printf("%d\n", a[num1][num2]);//输出num1到num2的最短距离
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值