Floyd算法解决最短路径问题
时间复杂度O(n³)
可以解决小规模数据,数组中记录两个结点之间的最短距离,实现多次输出,对于负边权问题也适合,但不适用于带有负环的图
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1005
//n为结点数,m为边数,Q为查询次数
int n, m, Q;
int a[N][N];//邻接矩阵
void floyd()
{
//注意循环层数之间的关系
for (int k = 1; k <= n; k++)
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
//i经过k到j的距离若比当前记录的i到j的距离短则更新
a[i][j] = min(a[i][j], a[i][k] + a[k][j]);
}
}
}
}
int main()
{
int num1, num2, num3;
scanf("%d %d %d", &n, &m, &Q);
memset(a, 0x3f, sizeof a);//距离初始化为MAX
for (int i = 1; i <= n; i++)
{
a[i][i] = 0;//自己到自己的距离为0
}
for (int i = 0; i < m; i++)
{
scanf("%d %d %d", &num1, &num2, &num3);
if (num3 < a[num1][num2])//解决重边问题
a[num1][num2] = num3;//有向图
}
floyd();//函数调用
while (Q--)
{
scanf("%d %d", &num1, &num2);
//可以解决负权边问题
//由于负权边存在,大于MAX/2即为不可达
if (a[num1][num2] > MAX / 2) printf("impossible\n");
else printf("%d\n", a[num1][num2]);//输出num1到num2的最短距离
}
return 0;
}