Kruskal 算法(最小生成树)(图和贪心)

Kruskal 算法(最小生成树)

Kruskal 算法是一种用于求解加权连通图的最小生成树(MST)的贪心算法。它通过按权重从小到大排序所有边,并逐步选择不形成环的边,直到包含所有顶点。以下是详细的算法实现,包括原理、步骤、图示法表示步骤、代码关键行注释和时间复杂度。

1. 算法原理

Kruskal 算法的核心思想是贪心选择,即每次选择权重最小的边,确保不形成环。具体步骤如下:

初始化

  • 将所有边按权重从小到大排序。
  • 初始化一个数组 v[],用于记录每个顶点的根节点。

贪心选择

  • 从权重最小的边开始,选择不形成环的边,将其加入生成树。
  • 使用并查集(Union-Find)数据结构来检测环路。

重复步骤

  • 重复上述步骤,直到包含所有顶点。
2. 算法步骤

初始化

  • 将所有边按权重从小到大排序。
  • 初始化数组 v[],每个顶点初始化为自己的根节点。

贪心选择

  • 从权重最小的边开始,选择不形成环的边,将其加入生成树。
  • 使用并查集检测环路,如果两个顶点不在同一个集合中,则合并它们。

重复步骤

  • 重复上述步骤,直到包含所有顶点。
3. 图示法表示步骤

假设我们有以下加权无向图:

    2    3
(0)--(1)--(2)
 |   / \   |
6| 8/   \5 |7
 | /     \ |
(3)--(4)--(5)
    9    4
步骤 1:初始化
  • 将所有边按权重排序:[(0,1,2), (1,2,3), (2,5,4), (4,5,4), (0,3,6), (1,4,8), (3,4,9)]
  • 初始化 v[] 数组:[0, 1, 2, 3, 4, 5]
步骤 2:贪心选择

选择边 (0,1,2)

  • a = 0b = 1
  • v[0] = 1sum = 2

选择边 (1,2,3)

  • a = 1b = 2
  • v[1] = 2sum = 5

选择边 (2,5,4)

  • a = 2b = 5
  • v[2] = 5sum = 9

选择边 (4,5,4)

  • a = 4b = 5
  • v[4] = 5sum = 13

选择边 (0,3,6)

  • a = 0b = 3
  • v[0] = 3sum = 19

选择边 (1,4,8)

  • a = 1b = 4
  • v[1] = 4sum = 27
最终结果
  • 最小生成树的边为:[(0,1,2), (1,2,3), (2,5,4), (4,5,4), (0,3,6)]
  • 总权重为 19
4. 代码关键行注释
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

// 定义边结构体
struct Road {
    int a, b, w;
};

// 获取顶点v的根节点
int getRoot(int v[], int j) {
    while (v[j] != j) {
        j = v[j];
    }
    return j;
}

// 快速排序
void QuickSort(Road road[], int low, int high) {
    if (low < high) {
        int i = low, j = high;
        Road pivot = road[low];
        while (i < j) {
            while (i < j && road[j].w > pivot.w) --j;
            road[i] = road[j];
            ++i;
            while (i < j && road[i].w < pivot.w) ++i;
            road[j] = road[i];
            --j;
        }
        road[i] = pivot;
        QuickSort(road, low, i - 1);
        QuickSort(road, i + 1, high);
    }
}

// Kruskal算法实现
void Kruskal(AMGraph* G, Road road[], int v[], int* sum) {
    for (int i = 0; i < G->vexnum; i++) v[i] = i; // 初始化v数组
    QuickSort(road, 0, G->arcnum - 1); // 对边按权重排序
    *sum = 0; // 初始化最小生成树的边权重总和
    for (int i = 0; i < G->arcnum; i++) {
        int a = getRoot(v, road[i].a); // 获取顶点a的根节点
        int b = getRoot(v, road[i].b); // 获取顶点b的根节点
        if (a != b) { // 如果a和b不在同一个集合中
            v[a] = b; // 合并a和b
            *sum += road[i].w; // 更新最小生成树的边权重总和
        }
    }
}
5. 时间复杂度
  • 时间复杂度
    • 排序时间复杂度为O(ElogE),其中 EE 是边数。
    • 并查集操作的时间复杂度为O(ElogV),其中 VV 是顶点数。
    • 总时间复杂度为O(ElogE)。
6. 总结

通过 Kruskal 算法,可以高效地求解加权连通图的最小生成树。该算法的时间复杂度为线性级别,适用于各种大小的图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值