在离散数学中,主析取范式和主合取范式是命题逻辑里的重要概念,它们能够帮助我们更清晰地理解命题公式的逻辑结构和真值情况,在逻辑推理、电路设计、计算机科学等领域都有广泛应用。
一、概念原理
(一)主析取范式
主析取范式是由极小项的析取组成。极小项是一种特殊的简单合取式,对于包含 n 个命题变元的公式,每个命题变元与其否定不能同时存在,但两者之一必须出现且仅出现一次,这样的简单合取式就叫做极小项。例如对于两个命题变元 P 和 Q,极小项有 ¬P∧¬Q、¬P∧Q、P∧¬Q、P∧Q 。而主析取范式就是由这些极小项通过析取(逻辑或)运算组合而成。一个命题公式的主析取范式是唯一的,它反映了公式在所有可能赋值下为真的情况。
(二)主合取范式
主合取范式由极大项的合取构成。极大项是特殊的简单析取式,同样对于 n 个命题变元,每个命题变元与其否定不能同时存在,且两者之一必出现且仅出现一次 。以两个命题变元 P 和 Q 为例,极大项有 P∨Q、P∨¬Q、¬P∨Q、¬P∨¬Q 。主合取范式就是这些极大项通过合取(逻辑与)运算得到的。主合取范式也是唯一的,它展示了公式在所有可能赋值下为假的情况。
二、求取方法
(一)真值表法
- 步骤:
- 首先,列出命题公式的真值表。
- 对于主析取范式,找出真值表中公式真值为真的行,这些行对应的极小项进行析取,就得到主析取范式。
- 对于主合取范式,找出真值表中公式真值为假的行,将这些行对应的极大项进行合取,得到主合取范式。
<