离散数学 - 主析取范式和主合取范式

在离散数学中,主析取范式和主合取范式是命题逻辑里的重要概念,它们能够帮助我们更清晰地理解命题公式的逻辑结构和真值情况,在逻辑推理、电路设计、计算机科学等领域都有广泛应用。

一、概念原理

(一)主析取范式

主析取范式是由极小项的析取组成。极小项是一种特殊的简单合取式,对于包含 n 个命题变元的公式,每个命题变元与其否定不能同时存在,但两者之一必须出现且仅出现一次,这样的简单合取式就叫做极小项。例如对于两个命题变元 P 和 Q,极小项有 ¬P∧¬Q、¬P∧Q、P∧¬Q、P∧Q 。而主析取范式就是由这些极小项通过析取(逻辑或)运算组合而成。一个命题公式的主析取范式是唯一的,它反映了公式在所有可能赋值下为真的情况。

(二)主合取范式

主合取范式由极大项的合取构成。极大项是特殊的简单析取式,同样对于 n 个命题变元,每个命题变元与其否定不能同时存在,且两者之一必出现且仅出现一次 。以两个命题变元 P 和 Q 为例,极大项有 P∨Q、P∨¬Q、¬P∨Q、¬P∨¬Q 。主合取范式就是这些极大项通过合取(逻辑与)运算得到的。主合取范式也是唯一的,它展示了公式在所有可能赋值下为假的情况。

二、求取方法

(一)真值表法

  1. 步骤
    • 首先,列出命题公式的真值表。
    • 对于主析取范式,找出真值表中公式真值为真的行,这些行对应的极小项进行析取,就得到主析取范式。
    • 对于主合取范式,找出真值表中公式真值为假的行,将这些行对应的极大项进行合取,得到主合取范式。
  2. 举例:对于公式 P→Q,其真值表为:
    001
    011
    100
    111
    主析取范式:真值为 1 的行对应的极小项为 ¬P∧¬Q、¬P∧Q、P∧Q,主析取范式就是 (¬P∧¬Q) ∨ (¬P∧Q) ∨ (P∧Q) 。
    主合取范式:真值为 0 的行对应的极大项为 P∨¬Q,主合取范式就是 P∨¬Q 。

(二)等值演算法

  1. 步骤
    • 先利用蕴含等价式 A→B⇔¬A∨B、德摩根定律 ¬(A∨B)⇔¬A∧¬B、¬(A∧B)⇔¬A∨¬B 等将命题公式化为一般的析取范式或合取范式。
    • 对于主析取范式,如果得到的析取范式中某些简单合取式不是极小项,通过添加缺少的命题变元(如 A 变为 A∧(B∨¬B)),然后利用分配律展开,将其化为极小项,最后合并相同的极小项。
    • 对于主合取范式,如果得到的合取范式中某些简单析取式不是极大项,通过添加缺少的命题变元(如 A 变为 A∨(B∧¬B)),再利用分配律展开,化为极大项,最后合并相同的极大项。
  2. 举例:将 (P∧Q)∨R 化为主析取范式。
    • 首先,(P∧Q) 已经是简单合取式,但 R 不是极小项,R 化为 R∧(P∨¬P)∧(Q∨¬Q) 。
    • 则 (P∧Q)∨R = (P∧Q) ∨ [R∧(P∨¬P)∧(Q∨¬Q)]
    • 利用分配律展开:(P∧Q) ∨ (P∧Q∧R) ∨ (P∧¬Q∧R) ∨ (¬P∧Q∧R) ∨ (¬P∧¬Q∧R)
    • 整理后得到主析取范式。

三、求取小技巧

  • 观察公式结构:如果公式中蕴含较多的条件语句(→),先利用蕴含等价式将其转化为析取或合取形式,能简化后续步骤。
  • 巧用运算律:德摩根定律、分配律、结合律等在化简过程中经常用到,熟练运用可以减少计算量。例如在将公式化为析取范式或合取范式时,合理使用分配律可以快速得到所需形式。
  • 记忆常见等价式:除了蕴含等价式和德摩根定律,像交换律(A∧B⇔B∧A,A∨B⇔B∨A)、幂等律(A∧A⇔A,A∨A⇔A)等,能在运算中快速简化公式。

四、例题解析

(一)例题一:(P∨Q)→(Q∧R)

  1. 使用原理:蕴含等价式、德摩根定律、分配律。
  2. 解析
    • 求主析取范式
      • 根据蕴含等价式将 (P∨Q)→(Q∧R) 转换为 ¬(P∨Q)∨(Q∧R) 。
      • 利用德摩根定律得到 (¬P∧¬Q)∨(Q∧R) 。
      • 对 (¬P∧¬Q) 添加 R(变为 ¬P∧¬Q∧(R∨¬R)),对 (Q∧R) 添加 P(变为 (P∨¬P)∧Q∧R) 。
      • 利用分配律展开得到 (¬P∧¬Q∧R)∨(¬P∧¬Q∧¬R)∨(P∧Q∧R)∨(¬P∧Q∧R) ,即主析取范式 m₀∨m₁∨m₃∨m₇ 。
    • 求主合取范式
      • 由 ¬(P∨Q)∨(Q∧R) ,利用分配律得到 (¬(P∨Q)∨Q)∧(¬(P∨Q)∨R) 。
      • 对 ¬(P∨Q)∨Q 利用德摩根定律和分配律化简为 ¬P∨Q ,对 ¬(P∨Q)∨R 化简为 (¬P∨R)∧(¬Q∨R) 。
      • 最终得到主合取范式 (¬P∨Q)∧(¬P∨R)∧(¬Q∨R),即 M₂∧M₄∧M₅∧M₆ 。

(二)例题二:P∨(¬P→(Q∨(¬Q→R)))

  1. 使用原理:蕴含等价式、结合律。
  2. 解析
    • 化简原式
      • 根据蕴含等价式,¬Q→R⇔Q∨R ,¬P→(Q∨(¬Q→R)) 变为 ¬P→(Q∨(Q∨R)) ,即 ¬P→(Q∨R) ,再变为 P∨(Q∨R) 。
      • 所以原式变为 P∨(P∨(Q∨R)) ,利用结合律得到 P∨Q∨R 。
    • 求主析取范式
      • 将 P、Q、R 分别化为极小项形式,然后合并。
      • P = P∧(Q∨¬Q)∧(R∨¬R) = (P∧Q∧R)∨(P∧Q∧¬R)∨(P∧¬Q∧R)∨(P∧¬Q∧¬R) 。
      • Q = (P∨¬P)∧Q∧(R∨¬R) = (P∧Q∧R)∨(P∧Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧Q∧¬R) 。
      • R = (P∨¬P)∧(Q∨¬Q)∧R = (P∧Q∧R)∨(P∧¬Q∧R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R) 。
      • 合并后得到主析取范式 m₀∨m₁∨m₂∨m₃∨m₄∨m₅∨m₆∨m₇ 。
    • 求主合取范式:因为 P∨Q∨R 是重言式(主析取范式包含所有极小项),所以主合取范式为空,用 1 表示。

(三)例题三:(¬R∨(Q→P))→(P→(Q∨R))

  1. 使用原理:蕴含等价式、德摩根定律、结合律、交换律。
  2. 解析
    • 化简原式
      • 根据蕴含等价式,Q→P⇔¬Q∨P ,P→(Q∨R)⇔¬P∨(Q∨R) 。
      • 原公式变为 (¬R∨(¬Q∨P))→(¬P∨(Q∨R)) ,再利用蕴含等价式变为 ¬(¬R∨(¬Q∨P))∨(¬P∨(Q∨R)) 。
      • 利用德摩根定律得到 (R∧Q∧¬P)∨(¬P∨(Q∨R)) ,再利用结合律和交换律化简为 ¬P∨Q∨R 。
    • 求主析取范式
      • 将 ¬P、Q、R 化为极小项形式后合并。
      • ¬P = ¬P∧(Q∨¬Q)∧(R∨¬R) = (¬P∧Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧¬Q∧R)∨(¬P∧¬Q∧¬R) 。
      • Q = (P∨¬P)∧Q∧(R∨¬R) = (P∧Q∧R)∨(P∧Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧Q∧¬R) 。
      • R = (P∨¬P)∧(Q∨¬Q)∧R = (P∧Q∧R)∨(P∧¬Q∧R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R) 。
      • 合并后得到主析取范式 m₀∨m₁∨m₂∨m₃∨m₅∨m₆∨m₇ 。
    • 求主合取范式:因为 ¬P∨Q∨R 对应的极大项编码为 M₄ ,所以主合取范式为 M₄ ,即 P∧¬Q∧¬R 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值