最大子段和(动态规划)

原理

  1. 最大子段和问题定义
    给定一个整数序列,要求找出该序列中具有最大和的连续子段(子数组)。例如,对于序列 [-2, 1, -3, 4, -1, 2, 1, -5, 4],其最大子段和为 6,对应的子段是 [4, -1, 2, 1]

  2. 动态规划思路及状态定义

    • 状态定义:使用 dp[i] 表示以第 i 个元素结尾的最大子段和。例如,dp[3] 就代表以序列中第 3 个元素结尾的连续子段能取得的最大和(这里序列索引从 0 开始计数)。
    • 状态转移方程推导依据:对于每个元素 nums[i]i > 0),有两种选择来构成以它结尾的最大子段和。一种是将当前元素 nums[i] 加入到以 nums[i - 1] 结尾的最大子段中(即 dp[i - 1] + nums[i]),另一种就是当前元素 nums[i] 单独作为一个子段(即 nums[i] 本身),取这两种情况中的较大值作为 dp[i] 的值,也就是 dp[i] = max(dp[i - 1] + nums[i], nums[i])。因为要使得以 nums[i] 结尾的子段和最大,要么接上前面的子段(前提是能使和更大),要么就自己单独成段(前面的子段和为负时,接上反而会使和变小)。
    • 最终结果获取:在计算出所有以每个元素结尾的最大子段和 dp[i] 后,整个序列的最大子段和就是所有 dp[i] 中的最大值,通过遍历 dp 数组不断比较更新来找到这个最大值,存储在变量 result 中并最终返回。

步骤

  1. 边界情况处理及初始化(函数开头部分)
    • 首先判断输入的整数序列 nums 是否为空,如果为空(即 nums.size() == 0),按照题目要求直接返回 0,表示空序列的最大子段和为 0
    • 创建一个与输入序列 nums 长度相同的 dp 向量(vector<int> dp(nums.size());),用于存储以每个元素结尾的最大子段和。然后将 dp[0] 初始化为 nums[0],因为以第一个元素结尾的最大子段和就是这个元素本身,同时将 result 也初始化为 dp[0],此时 resul
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值