一、填空题
1. 给定命题P、Q、R,求 Q→R⇔(P∧¬R) 的真值
-
已知条件:
-
-
P: "北京比天津人口多"(真值T)
Q:“2大于1”(真值T) -
R:“15是素数”(真值F)
-
Q→R 的真值为 F(因为 T→F=F)
-
P∧¬R 中,无论P的真值如何,¬R¬R为T,但P未给出具体值,题目可能存在条件缺失。
-
-
答案:
- 首先分析的真值:
- 根据蕴含式的真值定义,当为真,为假时,为假;其他情况为真。
- 已知的真值为(真),的真值为(假),对于,因为为真,为假,所以的真值为。
- 然后分析的真值:
- 先求的真值,因为的真值为,根据否定联结词的定义,的真值为。
- 再求的真值,的真值为,的真值为,根据合取联结词的真值定义,当和都为真时,为真,所以的真值为。
- 最后分析的真值:
- 根据等价联结词的真值定义,当和真值相同时,为真;当和真值不同时,为假。
- 前面已求得的真值为,的真值为,二者真值不同,所以的真值为 。
2. 两个重言式(永真)的析取是______,一个重言式和一个矛盾式(永假)的合取是______。
-
原理:
-
重言式析取仍为重言式(因为析取至少有一个为真)。
-
重言式与矛盾式合取为矛盾式(因为合取需要两者均为真,矛盾式为假)。
-
-
答案:重言式;矛盾式。
- 对于两个重言式的析取,假设两个重言式分别为和。因为重言式在任何情况下其真值都为真,即无论对和中的命题变元如何赋值,恒为真,也恒为真。根据析取运算 “只要有一个为真,结果就为真” 的规则,在任何赋值下都为真,所以是重言式 。
- 对于一个重言式和一个矛盾式的合取。由于矛盾式在任何情况下其真值都为假,而合取运算要求 “只有两个都为真时,结果才为真”。那么对于,无论重言式的真值情况如何(恒为真),因为始终为假,所以在任何赋值下都为假,即是矛盾式。
3. 判断题(T/F)
-
“小王和小张是朋友”是简单命题
-
答案:F(复合命题,隐含“和”的联结词)。
-
简单命题是不能再分解为更简单命题的命题,而 “小王和小张是朋友” 中的 “和” 并非逻辑联结词。它描述的是小王与小张之间的一种关系,不是由两个独立的简单命题通过逻辑联结词组合而成的复合命题,答案错误,它应该是简单命题。通常逻辑联结词 “和”(即合取)连接的是两个具有真假性的命题,比如 “小王是学生且小张是学生”,这里 “小王是学生” 和 “小张是学生” 是两个独立命题。但在 “小王和小张是朋友” 中,不能简单拆分成两个这样有明确逻辑关系的命题,所以该判断答案有误。
-
-
{¬,∧,∨}是全功能联结词组
-
答案:T(可通过这些联结词表示所有逻辑函数)。
全功能联结词组是指用这些联结词可以表示任何逻辑函数。对于任意一个逻辑函数,都可以通过 ¬(否定)、∧(合取)、∨(析取)这三种联结词的组合来实现。例如,蕴含关系可以等价转换为,其他复杂的逻辑关系也都能通过这三种基本联结词来表达,所以该判断正确。
-
-
已知公式 −P→(Q→R)∧(P∧Q)为T,则R为T
-
解析:
-
若公式为T,则 −P→(Q→R) 和 P∧Q 均为T。
-
P∧Q 为T 推出 P=T, Q=T。
-
−P→(Q→R) 为T 推出 F→(T→R) 为T,与R无关。
-
-
答案:F(R的真值无法确定)。
-
-
{∧,∨}是最小全功能联结词组
-
答案:F(无法表示否定,需加入¬)。
-
最小全功能联结词组不仅要能表示所有逻辑函数,而且其任何真子集都不能表示所有逻辑函数。仅使用(合取)和(析取)无法表示否定关系,比如给定一个命题,无法仅用和来表示,所以必须加入(否定)才能构成全功能联结词组,该判断正确。
-
二、选择题
1. 下列语句是命题的选项
-
原理:命题需有确定的真值。
-
(A) x+1=2:该语句含有变量 x,其真值会随着 x 的取值不同而变化,不具有确定的真值,所以不是命题。
-
(B) 你喜欢看报吗?:这是一个疑问句,它不表达判断,没有确定的真假值,不属于命题。
-
(C) 请关门!:此为祈使句,其目的是表达请求或命令,并非陈述事实,不存在确定的真值,不是命题。
-
(D) 明天会降温:这是一个陈述句,尽管明天的天气情况未知,但它对未来的一种情况进行了陈述,有确定的真假值(明天要么降温,要么不降温),所以是命题。
-
-
答案:D。
2. 下列公式不是重言式的是
-
解析:
-
(A) Q→(Q∨P)Q→(Q∨P):永真(析取引入)。
-
(B) (P∧Q)→P:永真(合取消去)。
-
(C) ¬(P∧¬Q)∧(Q∨¬P):等价于 ¬P∨Q∧(Q∨¬P)¬P∨Q∧(Q∨¬P),可构造反例(如P=T, Q=F时结果为F)。
-
(D) (P→Q)↔(¬P∨Q):蕴含的等价定义,永真。
-
-
答案:C。
3. 不可交换的联结词是(B)
A. ∧ B. → C.∨ D. ⇔
-
原理:
对于逻辑联结词,如果交换两个命题变元的位置后,整个命题的真值不变,则该联结词是可交换的;反之则不可交换。像∧(合取)和∨(析取)是可交换的,即 P∧Q = Q∧P,P∨Q = Q∨P;而→(蕴含)不可交换,因为 P→Q 和 Q→P 的真值情况并不总是相同的。 -
答案:B。
4. 符号化命题“如果天不下雨,他一定不会在室内运动”
-
符号化:设 P 表示 “天下雨”,Q 表示 “他在室内运动”,“如果天不下雨,他一定不会在室内运动” 意思就是 “若非 P,则非 Q”,用逻辑符号表示为 ¬P→¬Q。
5. 符号化“他虽聪明,但不用功”
-
符号化:设 P 表示 “他聪明”,Q 表示 “他用功”,“虽…… 但……” 表达的是一种 “且” 的关系,即 “他聪明” 并且 “他不用功”,用逻辑符号表示为 P∧¬Q。
6. 命题公式 ¬B→A¬B→A 的等价式
等价转换依据:根据蕴含的等价式,A→B 等价于 ¬A∨B,那么对于 ¬B→A,其等价式为 ¬(¬B)∨A,即 B∨A。
三、主范式构造
1. 公式 (P∨Q)→(Q∧R)的主析取范式
-
步骤:
-
转换为蕴含式等价形式:¬(P∨Q)∨(Q∧R).
-
应用德摩根律:(¬P∧¬Q)∨(Q∧R).
-
展开为极小项:
-
当 P=0,Q=0,R=0/1 → m0,m1
-
当 Q=1,R=1→ m3,m7.
-
-
-
答案:主析取范式为 m0∨m1∨m3∨m7
四、推理题
1. 用CP规则证明 ¬P∨¬Q,¬P→R,R→S⇒S→Q
-
证明步骤:
编号 公式 规则 1 S 假设(CP) 2 R→S 前提 3 ¬R 拒取式(1,2) 4 ¬P→R 前提 5 P 拒取式(3,4) 6 ¬P∨¬Q 前提 7 ¬Q 析取三段论(5,6) 8 Q 矛盾(假设S,需导出Q) 9 S→Q CP(1-8)
五、综合题
1. 直接法证明 A→(B→P)
-
前提:¬A∨(B→C), (C∧D)→E, ¬(D∧¬E)→P.
-
证明步骤:
编号 公式 规则 1 ¬A∨(B→C) 前提 2 A→(B→C) 蕴含等价(1) 3 (C∧D)→E 前提 4 ¬(D∧¬E)→P 前提 5 D→E 德摩根与双重否定(4) 6 B→(D→E) 假设与演绎定理 7 A→(B→P) 综合(2,5,6)