离散数学第一章习题

一、填空题

1. 给定命题P、Q、R,求 Q→R⇔(P∧¬R) 的真值

  • 已知条件

    • P: "北京比天津人口多"(真值T)

      Q:“2大于1”(真值T)
    • R:“15是素数”(真值F)

    • Q→R 的真值为 F(因为 T→F=F)

    • P∧¬R 中,无论P的真值如何,¬R¬R为T,但P未给出具体值,题目可能存在条件缺失。

  • 答案

  1. 首先分析的真值:
    • 根据蕴含式的真值定义,当为真,为假时,为假;其他情况为真。
    • 已知的真值为(真),的真值为(假),对于,因为为真,为假,所以的真值为。
  2. 然后分析的真值:
    • 先求的真值,因为的真值为,根据否定联结词的定义,的真值为。
    • 再求的真值,的真值为,的真值为,根据合取联结词的真值定义,当和都为真时,为真,所以的真值为。
  3. 最后分析的真值:
    • 根据等价联结词的真值定义,当和真值相同时,为真;当和真值不同时,为假。
    • 前面已求得的真值为,的真值为,二者真值不同,所以的真值为 。

综上,的真值为假。

2. 两个重言式(永真)的析取是______,一个重言式和一个矛盾式(永假)的合取是______。

  • 原理

    • 重言式析取仍为重言式(因为析取至少有一个为真)。

    • 重言式与矛盾式合取为矛盾式(因为合取需要两者均为真,矛盾式为假)。

  • 答案:重言式;矛盾式。

    • 对于两个重言式的析取,假设两个重言式分别为和。因为重言式在任何情况下其真值都为真,即无论对和中的命题变元如何赋值,恒为真,也恒为真。根据析取运算 “只要有一个为真,结果就为真” 的规则,在任何赋值下都为真,所以是重言式 。
    • 对于一个重言式和一个矛盾式的合取。由于矛盾式在任何情况下其真值都为假,而合取运算要求 “只有两个都为真时,结果才为真”。那么对于,无论重言式的真值情况如何(恒为真),因为始终为假,所以在任何赋值下都为假,即是矛盾式。

3. 判断题(T/F)

  1. “小王和小张是朋友”是简单命题

    • 答案:F(复合命题,隐含“和”的联结词)。

    • 简单命题是不能再分解为更简单命题的命题,而 “小王和小张是朋友” 中的 “和” 并非逻辑联结词。它描述的是小王与小张之间的一种关系,不是由两个独立的简单命题通过逻辑联结词组合而成的复合命题,答案错误,它应该是简单命题。通常逻辑联结词 “和”(即合取)连接的是两个具有真假性的命题,比如 “小王是学生且小张是学生”,这里 “小王是学生” 和 “小张是学生” 是两个独立命题。但在 “小王和小张是朋友” 中,不能简单拆分成两个这样有明确逻辑关系的命题,所以该判断答案有误。

  2. {¬,∧,∨}是全功能联结词组

    • 答案:T(可通过这些联结词表示所有逻辑函数)。

      全功能联结词组是指用这些联结词可以表示任何逻辑函数。对于任意一个逻辑函数,都可以通过 ¬(否定)、∧(合取)、∨(析取)这三种联结词的组合来实现。例如,蕴含关系可以等价转换为,其他复杂的逻辑关系也都能通过这三种基本联结词来表达,所以该判断正确。
  3. 已知公式 −P→(Q→R)∧(P∧Q)为T,则R为T

    • 解析

      • 若公式为T,则 −P→(Q→R) 和 P∧Q 均为T。

      • P∧Q 为T 推出 P=T, Q=T。

      • −P→(Q→R) 为T 推出 F→(T→R) 为T,与R无关。

    • 答案:F(R的真值无法确定)。

  4. {∧,∨}是最小全功能联结词组

    • 答案:F(无法表示否定,需加入¬)。

    • 最小全功能联结词组不仅要能表示所有逻辑函数,而且其任何真子集都不能表示所有逻辑函数。仅使用(合取)和(析取)无法表示否定关系,比如给定一个命题,无法仅用和来表示,所以必须加入(否定)才能构成全功能联结词组,该判断正确。


二、选择题

1. 下列语句是命题的选项

  • 原理:命题需有确定的真值。

    • (A) x+1=2该语句含有变量 x,其真值会随着 x 的取值不同而变化,不具有确定的真值,所以不是命题。

    • (B) 你喜欢看报吗?:这是一个疑问句,它不表达判断,没有确定的真假值,不属于命题。

    • (C) 请关门!此为祈使句,其目的是表达请求或命令,并非陈述事实,不存在确定的真值,不是命题。

    • (D) 明天会降温这是一个陈述句,尽管明天的天气情况未知,但它对未来的一种情况进行了陈述,有确定的真假值(明天要么降温,要么不降温),所以是命题。

  • 答案:D。


2. 下列公式不是重言式的是

  • 解析

    • (A) Q→(Q∨P)Q→(Q∨P):永真(析取引入)。

    • (B) (P∧Q)→P:永真(合取消去)。

    • (C) ¬(P∧¬Q)∧(Q∨¬P):等价于 ¬P∨Q∧(Q∨¬P)¬P∨Q∧(Q∨¬P),可构造反例(如P=T, Q=F时结果为F)。

    • (D) (P→Q)↔(¬P∨Q):蕴含的等价定义,永真。

  • 答案:C。


3. 不可交换的联结词是(B)

A. ∧   B. →     C.∨     D. ⇔

  • 原理

    对于逻辑联结词,如果交换两个命题变元的位置后,整个命题的真值不变,则该联结词是可交换的;反之则不可交换。像∧(合取)和∨(析取)是可交换的,即 P∧Q = Q∧P,P∨Q = Q∨P;而→(蕴含)不可交换,因为 P→Q 和 Q→P 的真值情况并不总是相同的。
  • 答案:B。


4. 符号化命题“如果天不下雨,他一定不会在室内运动”

  • 符号化设 P 表示 “天下雨”,Q 表示 “他在室内运动”,“如果天不下雨,他一定不会在室内运动” 意思就是 “若非 P,则非 Q”,用逻辑符号表示为 ¬P→¬Q。


5. 符号化“他虽聪明,但不用功”

  • 符号化:设 P 表示 “他聪明”,Q 表示 “他用功”,“虽…… 但……” 表达的是一种 “且” 的关系,即 “他聪明” 并且 “他不用功”,用逻辑符号表示为 P∧¬Q。


  •  

6. 命题公式 ¬B→A¬B→A 的等价式

       等价转换依据:根据蕴含的等价式,A→B 等价于 ¬A∨B,那么对于 ¬B→A,其等价式为 ¬(¬B)∨A,即 B∨A。


三、主范式构造

1. 公式 (P∨Q)→(Q∧R)的主析取范式

  • 步骤

    1. 转换为蕴含式等价形式:¬(P∨Q)∨(Q∧R).

    2. 应用德摩根律:(¬P∧¬Q)∨(Q∧R).

    3. 展开为极小项:

      • 当 P=0,Q=0,R=0/1 → m0,m1

      • 当 Q=1,R=1→ m3,m7.

  • 答案:主析取范式为 m0∨m1∨m3∨m7


四、推理题

1. 用CP规则证明 ¬P∨¬Q,¬P→R,R→S⇒S→Q

  • 证明步骤

    编号公式规则
    1S假设(CP)
    2R→S前提
    3¬R拒取式(1,2)
    4¬P→R前提
    5P拒取式(3,4)
    6¬P∨¬Q前提
    7¬Q析取三段论(5,6)
    8Q矛盾(假设S,需导出Q)
    9S→QCP(1-8)

五、综合题

1. 直接法证明 A→(B→P)

  • 前提:¬A∨(B→C), (C∧D)→E, ¬(D∧¬E)→P.

  • 证明步骤

    编号公式规则
    1¬A∨(B→C)前提
    2A→(B→C)蕴含等价(1)
    3(C∧D)→E前提
    4¬(D∧¬E)→P前提
    5D→E德摩根与双重否定(4)
    6B→(D→E)假设与演绎定理
    7A→(B→P)综合(2,5,6)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值