人工智能实践:Tensorflow笔记 Class 1:神经网络计算

该博客详细介绍了鸢尾花分类问题的解决过程,使用神经网络进行建模。内容涵盖神经网络的设计,包括搭建网络、选择损失函数、应用梯度下降及反向传播算法。同时,提供了TensorFlow2的代码实例,展示如何读取数据、进行数据预处理、训练模型并计算准确率。此外,还讲解了张量生成和TensorFlow2常用函数的使用。
摘要由CSDN通过智能技术生成

目录

1.1 人工智能三学派

1.2 神经网络设计过程

1.搭建网络

2.损失函数

​3.梯度下降

4.反向传播 

5.代码实例

1.3 张量生成

1.4 Tensorflow2常用函数

1.5 鸢尾花分类

1.读取数据(pycharm)

2.数据集乱序

3.数据分集

4.数据配对

5.定义可训练参数

6.嵌套循环迭代

7.计算准确率

8.可视化


1.1 人工智能三学派

行为主义:基于控制论

符号主义:基于算数逻辑表达式

连接主义:基于仿生学 

1.2 神经网络设计过程

用神经网络实现鸢尾花分类

1.搭建网络

 

 由于w、b的值在初始时随机给定,因此初次预测结果不一定可靠

2.损失函数

损失函数输出最小时,w、b会出现最优值

3.梯度下降

 

4.反向传播 

5.代码实例

import tensorflow as tf

w=tf.Variable(tf.constant(5,dtype=tf.float32))
lr=0.2
epoch=40

for epoch in range(epoch):
    with tf.GradientTape() as tape:
        loss=tf.square(w+1)
    grads=tape.gradient(loss,w)

    w.assign_sub(lr*grads)
    print("after %s epoch,w is %f,loss is %f"%(epoch,w.numpy(),loss))

1.3 张量生成

1.4 Tensorflow2常用函数

1.5 鸢尾花分类

1.读取数据(pycharm)

 

2.数据集乱序

3.数据分集

4.数据配对

5.定义可训练参数

6.嵌套循环迭代

7.计算准确率

8.可视化

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值