线性空间中有些啥?

嗨,大家好!我是 n n n维线性空间中的非零向量阿尔法 α \alpha α. 您学习了线性空间的概念以后一定觉得很抽象吧!今天我就给您当向导,一起来线性空间玩耍玩耍!

什么叫线性空间?

我家的兄弟姊妹很多,比如最小的兄弟0向量,我的孪生妹妹——负向量, − α -\alpha α. 所有的向量构成了大家族——非空向量集合 V V V.

通过运算可以由已有的向量产生新的向量. V V V中的两个向量可以做加法, γ = α + β \gamma=\alpha+\beta γ=α+β, 加法的结果叫做. 借助数域王国 P P P中的数和 V V V中的向量通过数乘运算也可以产生新的向量. 例如 k α k\alpha kα, 叫做数 k k k与向量 α \alpha α. 当 k k k跑遍数域 P P P中的数时,就得到所有与我"共线"的向量啦!两种运算都必须封闭,即运算的结果必须还在 V V V中. 加法和数乘统称为线性运算.

俗话说:“不以规矩,不成方圆”. 线性运算必须满足下面的八条运算规则,它们是被数学家公理化地规定下来的,即其正确性毋须证明.

加法运算律数乘运算律
A 1 : α + β = β + α A_1: \alpha+\beta=\beta+\alpha A1:α+β=β+α M 1 : 1 α = α M_1:1\alpha=\alpha M1:1α=α
A 2 A_2 A2: ( α + β ) + γ = β + ( α + γ ) (\alpha+\beta)+\gamma=\beta+(\alpha+\gamma) (α+β)+γ=β+(α+γ) M 2 : K ( l α ) = ( k l ) α M_2:K(l\alpha)=(kl)\alpha M2:K(lα)=(kl)α
A 3 : 0 + α = α + 0 = α A_3:0+\alpha=\alpha+0=\alpha A3:0+α=α+0=α M 4 M_4 M4: ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
A 4 : α + ( − α ) = ( − α ) + α = 0 A_4:\alpha+(-\alpha)=(-\alpha)+\alpha=0 A4:α+(α)=(α)+α=0 M 4 : k ( α + β ) = k α + k β M_4:k(\alpha+\beta)=k\alpha+k\beta M4:k(α+β)=kα+kβ

线性空间的四个要素是:一个数域 P P P, 一个非空集合 V V V, 两种线性运算,八条运算规则,这样的一个代数系统称为线性空间, 记为 V ( + , ⋅ ) V(+,\cdot) V(+,).

线性运算与子空间

你可以把 k α , ∀ k ∈ P k\alpha, \forall k\in P kα,kP想象成线性空间 V V V中的“直线”, 呃,准确地说应该是 V V V的一个一维子空间. 在 n n n维线性空间中一定存在许多不同“方向”的"直线". 例如,若 β ≠ k α \beta\neq k\alpha β̸=kα,那么 m β , ∀ m ∈ P m\beta, \forall m\in P mβ,mP就是另外一个一维子空间.

下面继续思考用运算产生新向量: ∀ α , β ∈ V , ∀ k , l ∈ P \forall \alpha,\beta\in V, \forall k, l\in P α,βV,k,lP, 由这些向量和数通过线性运算——加法和数乘,能产生什么样的结果呢?

对了,就是 k α + l β k\alpha+l\beta kα+lβ这样的式子,我们把它成为 α , β \alpha,\beta α,β线性组合. 固定 α , β \alpha, \beta α,β为两个不共线的向量, 让 k , l k,l k,l跑遍一切数域 P P P里的数,则 k α + l β k\alpha+l\beta kα+lβ将会张成一个通过“直线” k α k\alpha kα和“直线” l β l\beta lβ的“平面”,或者准确地说成是 V V V中的一个二维子空间.

r r r个向量 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr通过线性运算所得的结果将是下面的样子:

∑ i = 1 i = r k i α i = k 1 α 1 + k 2 α 2 + ⋯ + k r α r . ( 1 ) \sum_{i=1}^{i=r}k_i\alpha_i=k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r.\quad \quad (1) i=1i=rkiαi=k1α1+k2α2++krαr.(1)

按照上面的推理,是否可以说 ∑ i = 1 i = r k i α i \sum_{i=1}^{i=r}k_i\alpha_i i=1i=rkiαi生成一个** r r r维子空间**呢?这可不一定哦!要看 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr的关系如何?根据他们是否为 r r r个"独立的方向”还是“某个方向”依赖于其他的向量,可以分为两类关系:线性相关和线性无关.

如果能用不全为0的系数 k 1 , k 2 , ⋯   , k r k_1,k_2,\cdots,k_r k1,k2,,kr α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr组成0向量,那么就说 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr线性相关的,否则,称它们是线性无关的. 说得通俗一点,如果只有唯一的方式将它们组成0向量,它们就是线性无关的.

如果 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr是线性相关的,则它们不是互相独立的,其中至少有一个向量是依赖于其余 r − 1 r-1 r1个向量的.例如,如果下列等式中的 k r ≠ 0 k_r\neq 0 kr̸=0,

k 1 α 1 + k 2 α 2 + ⋯ + k r α r = 0 , k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r=0, k1α1+k2α2++krαr=0,

那么,

α r = − 1 k r ( k 1 α 1 + k 2 α 2 + ⋯ + k r α r ) . ( 2 ) \alpha_r=-\frac{1}{k_r}(k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r).\quad \quad (2) αr=kr1(k1α1+k2α2++krαr).(2)

这个式子表明, α r \alpha_r αr实际上是 α 1 , α 2 , ⋯   , α r − 1 \alpha_1,\alpha_2,\cdots,\alpha_{r-1} α1,α2,,αr1所生成的子空间中的一员. 将(2)代入(1)式,得

∑ i = 1 i = r k i α i = k 1 α 1 + k 2 α 2 + ⋯ + k r α r \sum_{i=1}^{i=r}k_i\alpha_i=k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r i=1i=rkiαi=k1α1+k2α2++krαr

= k 1 ( 1 − 1 k r ) α 1 + k 2 ( 1 − 1 k r ) α 2 + ⋯ + k r − 1 ( 1 − 1 k r ) α r − 1 =k_1(1-\frac{1}{k_r})\alpha_1+k_2(1-\frac{1}{k_r})\alpha_2+\cdots+k_{r-1}(1-\frac{1}{k_r})\alpha_{r-1} =k1(1kr1)α1+k2(1kr1)α2++kr1(1kr1)αr1

上面的式子表明,在生成子空间的时候, α r \alpha_r αr的加入并没有给向量组 α 1 , α 2 , ⋯ &ThinSpace; , α r − 1 \alpha_1,\alpha_2,\cdots,\alpha_{r-1} α1,α2,,αr1增添“新的”东西,从而可以认为是“多余的”向量. 通过不断地去掉 α 1 , α 2 , ⋯ &ThinSpace; , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr中多余的向量(也就是能被其余向量表出的向量),将得到向量组 α 1 , α 2 , ⋯ &ThinSpace; , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr的一个极大线性无关组,比如说是前 s ( s &lt; r ) s(s&lt;r) s(s<r)个向量 α 1 , α 2 , ⋯ &ThinSpace; , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs, 那么

∑ i = 1 i = s k i α i = k 1 α 1 + k 2 α 2 + ⋯ + k s α s \sum_{i=1}^{i=s}k_i\alpha_i=k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s i=1i=skiαi=k1α1+k2α2++ksαs

当上面的式子中的每一个系数 k i ( i = 1 , 2 , ⋯ &ThinSpace; , s ) k_i(i=1,2,\cdots,s) ki(i=1,2,,s)都跑遍数域 P P P时,将得到一个** s s s子维空间**,那些被去掉的向量 α s + 1 , ⋯ &ThinSpace; , α r \alpha_{s+1},\cdots,\alpha_r αs+1,,αr都在这个 s s s子维空间中.

维数、基和坐标

n n n维线性空间中,最多只能找到 n n n个线性无关的向量组成的向量组, 换句话说,任意 n + 1 n+1 n+1个向量都必线性相关. 这个 n n n就是线性空间 V V V维数. n n n维空间中 n n n个线性无关的向量就是空间的一组, 它是 n n n维空间的“坐标系”. 在一组基下,每个向量都能找到自己的"位置",用一个流行的说法,就是每个向量都被“数字化”了. 例如, 设 ε 1 , ε 2 , ⋯ &ThinSpace; , ε n \varepsilon_1, \varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn V V V的一组基,我阿尔法就能被它们表示出来了:

α = a 1 ε 1 + a 2 ε 2 + ⋯ + a n ε n \alpha=a_1\varepsilon_1+a_2\varepsilon_2+\cdots+a_n\varepsilon_n α=a1ε1+a2ε2++anεn

= ( ε 1 , ε 2 , ⋯ &ThinSpace; , ε n ) ( a 1 a 2 ⋮ a n ) ( 3 ) =(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)\begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix}\quad\quad (3) =(ε1,ε2,,εn)a1a2an(3)

n n n元有序数组 ( a 1 a 2 ⋮ a n ) \begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix} a1a2an称为 α \alpha α坐标.

这样,相当于在线性空间 V V V和线性空间 P n P^n Pn之间建立了一个一一映射 σ \sigma σ V V V中每一个向量在 P n P^n Pn中都有唯一的一个 n n n元有序数组与之对应,反过来, P n P^n Pn中的每一个 n n n元有序数组都可以通过(3)式与 V V V中的一个向量对应. 这种情况,我们在解析几何中也见到过:通过建立笛卡尔直角坐标系,几何空间中的有向线段就与代数空间 R 3 R^3 R3中的3元有序实数数组建立了一一对应关系.

这个一一映射 σ \sigma σ σ ( α ) \sigma(\alpha) σ(α)就是取向量 α \alpha α该组基下的坐标的意思),由于

σ ( α + β ) = σ ( α ) + σ ( β ) \sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta) σ(α+β)=σ(α)+σ(β)

σ ( k α ) = k σ ( α ) , \sigma(k\alpha)=k\sigma(\alpha), σ(kα)=kσ(α),

我们说 σ \sigma σ保持空间中的线性运算, 在这种观点下,任意 n n n维线性空间都可以认为与我们熟悉的 n n n元有序数组空间 P n P^n Pn同构的.

好了,谢谢你的耐心,听我阿尔法的啰嗦讲解!不知你是否对线性空间有新的认识呢?欢迎点击右下方“在看”并发送消息进行讨论!也麻烦您动手转发给更多的朋友,让更多的同学受益!

最后,别忘了我阿尔法,是抽象线性空间中的抽象向量,可以代表每一个具体线性空间如 P [ x ] n , P n , P m × n P[x]_n,P^n, P^{m\times n} P[x]nPn,Pm×n中的向量.


更多内容,欢迎用微信扫描下图中的二维码,或搜索“大哉数学之为用”,免费关注微信公众号“大哉数学之为用”进行阅读。
在这里插入图片描述


如果您觉得本文对您有帮助,欢迎赞赏!您的支持是作者继续下去的动力!在这里插入图片描述

  • 7
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值