波动数列
int dp[1005][1005];
int mood(int n, int m){
return (n % m + m) % m;//求正余数
}
int main() {
IOS;
// freopen("P1908_6.in","r",stdin);//读入数据
// freopen("P1908.out","w",stdout); //输出数据
int n, s, a, b;
cin >> n >> s >> a >> b;
s %= n, a %= n, b %= n;
dp[0][0] = 1;
for (int i = 1; i <= n; ++i){
for (int j = 0; j < n; ++j){
dp[i][j] = (dp[i - 1][mood(j - a * i, n)] + dp[i - 1][mood(j + b * i, n)]) % mod;
}
}
cout << dp[n - 1][mood(s, n)];//因为第一个x也是一个数
return 0;
}
1、如果全部都是加减,那么可以先mod
2、 一看就会超时或者是明显写进dp就会超时的的数可以考虑找规律
3、 能写成等式意味着可以去掉一些东西,可以改变形式求所需的
4、 虽然不是等价变换但是含义是一样的,就可以朝看着比较舒服的等式取转变
5、dp[0][0]就是边界,是一个都不取时的方案,而例如dp[0][1]是不合法方案为0
外卖店优先级
模拟还是要按标准做法做才最稳妥,下面这个交了很多次要么卡5要么卡8(ac了)
模拟题伪代码比较重要
vector<int> v[maxn];
vector<int> ans;
int main() {
IOS;
//对每一个分别计算
int n, m, t;
cin >> n >> m >> t;
for (int i = 0; i < m; ++i){
int ts, id;
cin >> ts >> id;
v[id].push_back(ts);
}
for (int i = 1; i <= n; ++i){
if(v[i].size() == 0) continue;
int pre = 0;
sort(v[i].begin(), v[i].end());
int tans = 0;
bool flag = false;
for (int j = 0; j < v[i].size(); ++j){
if(pre == 0) {
pre = v[i][j];
tans = 2;
continue;
}
if(pre != v[i][j]) {
int temp = v[i][j] - pre - 1;
tans -= temp;
}
if(tans < 0)
tans = 0;
if(tans > 5)
flag = true;
else if(flag && tans <= 3)
flag = false;
tans += 2;
pre = v[i][j];
if(tans > 5)//看了讨论,一个数小于一个点优先级本来大于5减到了2,此时应该出来,但是我先加了此位置的数值,导致这个数大于3了就出不来了
flag = true;
else if(flag && tans <= 3)
flag = false;
}
if(t - pre > 0) {
tans -= t - pre;
if(tans < 0){
tans = 0;
}
if(tans <= 3)
flag = false;
}
if(tans <= 3) //所以这有2个判的
flag = false;
if(tans > 5 || flag)
ans.push_back(i);
}
cout << ans.size();
return 0;
}
标准
pair<int, int> p[maxn];
bool st[maxn];
int score[maxn], last[maxn];
int main() {
IOS;
int n, m, t;
cin >> n >> m >> t;
for (int i = 0; i < m; ++i){
cin >> p[i].first >> p[i].second;
}
sort(p, p + m);
for (int i = 0; i < m; ){
int j = i;
while(j < m && p[j] == p[i])
++j;
int t = p[i].first, id = p[i].second, cnt = j - i;
i = j;
//---------------------------上面那个处理很典
score[id] -= t - last[id] - 1;
if(score[id] < 0)
score[id] = 0;
if(score[id] <= 3)
st[id] = false;
score[id] += cnt * 2;
if(score[id] > 5)//实际也是判了两次,我这里没考虑到
st[id] = true;
last[id] = t;
}
for (int i = 1; i <= n; i ++ )
if (last[i] < t){
score[i] -= t - last[i];
if (score[i] <= 3) st[i] = false;
}
int res = 0;
for (int i = 1; i <= n; i ++ ) res += st[i];
printf("%d\n", res);
return 0;
}
航班时间
我从数字时间猜出来 / 2的…
这居然是可以推的小学奥数题
题: 船速水速木块
这个: 相差 - 时差 + 相差 + 时差 = 2 * 时差
int get_seconds(int h, int m, int s){
return h * 3600 + m * 60 + s;
}
int get_time(){
string s;
getline(cin, s);
if(s.back() != ')')
s += " (+0)";
int h1, m1, s1, h2, m2, s2, d;
sscanf(s.c_str(), "%d:%d:%d %d:%d:%d (+%d)", &h1, &m1, &s1, &h2, &m2, &s2, &d);
return get_seconds(h2, m2, s2) - get_seconds(h1, m1, s1) + d * 24 * 3600;
}
int main() {
IOS;
int t;
cin >> t;
string s;
getline(cin, s);
while(t--){
int time = (get_time() + get_time()) / 2;
int hour = time / 3600, minute = time % 3600 / 60, second = time % 60;
printf("%02d:%02d:%02d\n", hour, minute, second);
}
return 0;
}
对于换行还是用getline保险一点,getchar()会出错
关于时间:转换成秒更方便
c_str(): char 形式表现的字符串,放sscanf的第一位
关于sscanf() : 1 2
逆序对的数量
sort写习惯了,除了考试前后排序都不会写orz
计算逆序对的数量(序列):
- 递归算左边的;
- 递归算右边的;
- 算一个左一个右的;
- 把他们加到到一起。
这个时候我们注意到一个很重要的性质,左右半边的元素在各自任意调换顺序,是不影响第三步计数的链接
裸的归并排序,从那个性质中推出来的res,还是不太会
归并视频
const int N = 1e6 + 10;
int cmp[N];
long long int res = 0;
int q[N];
void merge_sort(int l, int r){
if (l >= r) return;
int mid = l + r >> 1;
merge_sort(l, mid), merge_sort(mid + 1, r);
int i = l, j = mid + 1,k = 0;
while (i <= mid && j <= r){
if (q[i] <= q[j]){
cmp[k] = q[i];
++k, ++i;
}
else{
res += mid - i + 1;
cmp[k] = q[j];
++k, ++j;
}
}
//因为两个指针
while (i <= mid) {
cmp[k] = q[i];
++k, ++i;
}
while (j <= r) {
cmp[k] = q[j];
++k, ++j;
}
for (int i = l, j = 0; i <= r; i ++, j ++) q[i] = cmp[j];//还原
}
int main(){
int n;
cin >> n;
for (int i = 0; i < n; i ++) scanf("%d", &q[i]);
merge_sort(0, n - 1);
cout << res << endl;
return 0;
}
雷达设备
我觉得我的思路没问题啊,就是wa就是wa,我还特地证明了一下…
下面是ac代码,因为(我也不知道为什么要这样)
cin >> n >> r;
for (int i = 0; i < n; ++i){
int x, y;
cin >> x >> y;
if(abs(y) > r) {
cout << -1;
return 0;
}
p[i].second = x - sqrt(r * r - y * y);
p[i].first = x + sqrt(r * r - y * y);
}
sort(p, p + n);
int ans = 0;
for (int i = 0; i < n; ){
int j = i + 1;
for (; j < n;){
if(p[j].second <= p[i].first)
++j;
else
break;
}
i = j;
++ans;
}
cout << ans;
return 0;
}
付账问题
推出来了平均,但是方向错了,居然去考虑小于avr的正常,大于的取它的0.00001附近,卡这了orz
应该是把不够的数往后面填,这样也能使后面的数的差值变小
long double 输出只能用%Lf
int a[maxn];
int main() {
IOS;
// freopen("P1908_6.in","r",stdin);//读入数据
// freopen("P1908.out","w",stdout); //输出数据
ll n;
long double s;
cin >> n >> s;
for(int i = 0; i < n; ++i){
cin >> a[i];
}
sort(a, a + n);
long double ans = 0, avr = s / n;
for(int i = 0; i < n; ++i){
long double temp = s / (n - i);
if(a[i] < temp) temp = a[i];
s -= temp;
ans += (avr - temp) * (avr - temp);
}
printf("%.4Lf", sqrt(ans / n));
return 0;
}
糖果
背包是选择模型, 把很多同类的事物分到一块
背包问题一般第一维是数量,第二维是限制
能优化成一维的是因为单调
后一个状态方程推错了,搅起了
int dp[105][105];
int mood(int x, int k){
return (x % k + k) % k;
}
int main() {
IOS;
// freopen("P1908_6.in","r",stdin);//读入数据
// freopen("P1908.out","w",stdout); //输出数据
int n, k;
cin >> n >> k;
remin(dp);//不这样就会出错 应该是因为余数的计算,下次直接初始化就行了
dp[0][0] = 0;
for(int i = 1; i <= n; ++i){
int w;
cin >> w;
for(int j = 0; j < k; ++j){
dp[i][j] = max(dp[i - 1][j], dp[i - 1][mood(j + w, k)] + w);
//dp[i][j] = max(dp[i - 1][j], dp[i - 1][(j + k - w % k) % k] + w);
}
}
cout << dp[n][0];
return 0;
}
小沙好难哄啊