二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。
二分法的步骤为:
- 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
- 如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
- 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
- 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
- 如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a,b]内的根。
输入格式:
输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。
输入样例:
3 -1 -3 1
-0.5 0.5
输出样例:
0.33
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
需要注意:
区间端点为根的情况;
函数值很小但未必为根时也可以视为零点的情况,如果将判断条件设为f(mid)==0,运行会超时,需要设置一个小量eps=1e-13, 函数值绝对值小于eps即可视为零值点
#include<stdio.h>
double f(double a3, double a2, double a1, double a0, double x);
int main()
{
double a3,a2,a1,a0;
double a,b;
double mid;
double eps = 1e-13; // 绝对值小于此值可视为零点
scanf("%lf %lf %lf %lf", &a3, &a2, &a1, &a0);
scanf("%lf %lf", &a, &b);
if( f(a3,a2,a1,a0,a)==0 ) mid = a; // 区间端点是根
if( f(a3,a2,a1,a0,b)==0 ) mid = b;
while( a<b ){
if( f(a3,a2,a1,a0,a)*f(a3,a2,a1,a0,b)<0 ){
mid = (a+b)/2;
if( f(a3,a2,a1,a0,mid)<eps && f(a3,a2,a1,a0,mid)>-eps ){
break;
}
if( f(a3,a2,a1,a0,a)*f(a3,a2,a1,a0,mid)>0 ){
a = mid;
}
if( f(a3,a2,a1,a0,b)*f(a3,a2,a1,a0,mid)>0 ){
b = mid;
}
} else{ // 由于本题一定有解故此时应为端点为零点的情况
break;
}
}
printf("%.2f\n", mid);
return 0;
}
double f(double a3, double a2, double a1, double a0, double x)
{
double ret;
ret = a3*x*x*x + a2*x*x + a1*x + a0;
return ret;
}