PTA 7-29 二分法求多项式单根

文章描述了一个编程问题,要求编写程序利用二分法找到一个3阶多项式在特定区间的根。输入包含多项式的系数和区间,输出为根的值,精确到小数点后两位。代码中设置了精度阈值以处理函数值接近零的情况,并处理了区间端点为根的特殊情况。
摘要由CSDN通过智能技术生成

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。

二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
  • 如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
  • 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
  • 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
  • 如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。

本题目要求编写程序,计算给定3阶多项式f(x)=a3​x3+a2​x2+a1​x+a0​在给定区间[a,b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a3​、a2​、a1​、a0​,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

需要注意:

区间端点为根的情况;

函数值很小但未必为根时也可以视为零点的情况,如果将判断条件设为f(mid)==0,运行会超时,需要设置一个小量eps=1e-13, 函数值绝对值小于eps即可视为零值点

#include<stdio.h>

double f(double a3, double a2, double a1, double a0, double x);

int main()
{
	double a3,a2,a1,a0;
	double a,b;
	double mid;
	double eps = 1e-13;  // 绝对值小于此值可视为零点 
	scanf("%lf %lf %lf %lf", &a3, &a2, &a1, &a0);
	scanf("%lf %lf", &a, &b);
	if( f(a3,a2,a1,a0,a)==0 )  mid = a;  // 区间端点是根 
	if( f(a3,a2,a1,a0,b)==0 )  mid = b;
	while( a<b ){
		if( f(a3,a2,a1,a0,a)*f(a3,a2,a1,a0,b)<0 ){
			mid = (a+b)/2;
			if( f(a3,a2,a1,a0,mid)<eps && f(a3,a2,a1,a0,mid)>-eps ){
				break;
			}
			if( f(a3,a2,a1,a0,a)*f(a3,a2,a1,a0,mid)>0 ){
				a = mid;
			}
			if( f(a3,a2,a1,a0,b)*f(a3,a2,a1,a0,mid)>0 ){
				b = mid;
			}
		} else{ // 由于本题一定有解故此时应为端点为零点的情况 
			break;
		}
	}
	printf("%.2f\n", mid);
	return 0;
}

double f(double a3, double a2, double a1, double a0, double x)
{
	double ret;
	ret = a3*x*x*x + a2*x*x + a1*x + a0;
	return ret;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值