代码复现不稳定应该怎么调整

##tensorflow转为pytorch代码,复现结果浮动较大
尝试方法:

  1. 在测试和验证部分加入 model.eval()
  2. 去掉训练部分的shuffle ,保证每次送入的数据一样 。
  3. 设定各个部分的随机种子
`       random.seed(42)
        np.random.seed(42)
        pl.seed_everything(42)
        torch.cuda.manual_seed(42)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False`
  1. 加入模型初始化(根据非线性层的不同,选择不同的初始化的方式)
    xavier不适合relu激活函数。适用于tanh和softsign。
       # init
       for p in self.parameters():
           if p.dim() > 1:
               nn.init.xavier_normal_(p)

凯明初始化适合relu prelu leaky-relu一系列激活函数

     def _init_parameters(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

5.最新的一个说法是模型的参数量过小,导致实验的性能不稳定。我试一下。其实就算换成动态卷积,也增加不了多少参数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值