- 博客(13)
- 资源 (3)
- 收藏
- 关注
原创 NeuralMapPrior(NMP)和NeuralMapGrowing(NeMO),对BEVFeature建图
1)对于离线经验的建模2)两篇都对BEV特征进行空间记录与融合,但侧重略有不同。
2023-06-18 22:15:56 459
原创 2021-03-06 MarcPollefeys, HoloLens/MR Lecture & FrankDellaert, FactorGraphs Lecture
链接: https://www.youtube.com/watch?v=45r5VRHfGrs&t=265s两个核心部分:HoloLens介绍,可以作为一个很好的egocentric computer vision研究设备Privacy preserving的CV处理Part I - HoloLens & Sensor setup8M主RGB相机。一般程序只能获取这个相机数据(隐私设计)4个定位用相机(一对stereo+两个侧前+IMU)1M深度相机(大/小FOV模式),
2021-03-06 17:55:23 225
原创 2021-02-09 RCNN series
Faster R-CNN在出现5年之后,据称也仍是一个常用的目标检测做法,值得了解学习一下其整个系列的思路。R-CNN(Regions with CNN features)系列有最开始的R-CNN,改进的Fast R-CNN,和之后再改进的Faster R-CNN。比较好的对比,和总结:一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD一文读懂Faster RCNNR-CNN & Fast R-CNN & Faster R-CNN
2021-02-10 00:49:54 162
原创 2021-02-08 BN
Batch Normalization0. 总结有意思的是,原始论文宣称BN对Internal Covariance Shift有改善作用,之后的论文却提出了反驳。但是,BN的作用确实存在。参考Youtube介绍,BN的好处:收敛更快(让代价曲线从椭圆变成园,有利于梯度下降)对初值要求更低(一点点)带有regularization作用有如下有用的参考资料:[1] 2015 paper that introduced Batch Normalization: https://arxiv.
2021-02-09 01:01:32 153
原创 2021-01-31 Mobileye的R&D VP关于感知技术的介绍
视频简介Mobileye的R&D VP关于感知技术的介绍AV Sensing Tech and Algorithms with Gaby Hayon of MobileyeTalk时间: 2019年11月,放出来时是2020年底,已经过去了一年。新的可以看CES2021 Amnon Shashua的talkSlides可在intel网站下载:slides,或者csdn搬运下载。总结视频里有些跳跃,演讲人不太熟。有些PPT里的材料略过了,建议仔细看PPT文件。和2021CES的ta
2021-02-01 00:45:03 1029
原创 2021-01-25 Alexnet
Alexnetimagenet 15M图片 22K类别ILSVRC 1000图x1000类 1.2M训练集 50K验证 150K测试预处理降分辨率 crop到 256×256,保持宽高比减去训练集真值
2021-01-31 23:24:11 118
原创 2021-01-31 Mobileye Mapping负责人关于REM的介绍
Mobileye Mapping负责人关于REM的介绍Mapping Technology for AVs with Tal Babaioff of MobileyeTalk时间: 2019年11月,放出来时是2020年底,已经过去了一年。新的可以看CES2021 Amnon Shashua的talk地图的作用?一个场景:过一个凸面(山顶或桥顶,无法感知到顶点之后的道路情况)为何目前的Google、Waze、OSM地图不能用?因为高精度的地图,需辅助高精度的定位才能用。REM地图可以支
2021-01-31 23:17:38 1260
原创 Roughly Paper Reading - Information-Driven Direct RGB-D Odometry
粗读 - Information-Driven Direct RGB-D Odometry基本信息Main contribution背景知识基于Information选择point的思路基本信息– 论文– Projcet page– code 暂无Main contribution为RGB-D SLAM,基于information选择tracked points,最少可以只用24个点,达到SotA效果。其他降资源方式graph reduction,同样基于information。这些一
2020-09-20 16:05:34 146
原创 Basalt Paper Reading
OBasalt简要总结VI-OdometryVI-Mapping主要ReferenceBasalt项目网页:TUM CVG页面,以及github开源地址。简要总结要点:Optimization based.Two-layer odometry & mapping visual-inertial estimation.– SOTA VIO system.– Non-linear factory recovery for visual-inertial mapping.VI-Odo
2020-08-17 00:20:41 839 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人