2021-08-18

支持向量机(SVM)是一种最大化分类边界(margin)的机器学习方法,尤其适用于小样本数据。其优化目标是找到最小化权重向量的范数同时确保数据点正确分类的超平面。在处理非线性问题时,SVM引入正则项以解决无解或非理想解的情况,并通过高维映射和核函数来实现非线性分类。优化理论中,原问题与对偶问题的概念被用来寻找最优解,其中拉格朗日乘子法用于构建对偶问题,强对偶性保证了原问题与对偶问题解的一致性。
摘要由CSDN通过智能技术生成

支持向量机

定义

支持向量机是一个最大化margin(间隔)的方法
将平行线插到的向量叫支持向量(support vectors) 用在小样本有关,因为只跟支持向量有关。
定义:
1.训练数据及标签 (x1,y1),…,(xn,yn) yi=1/-1 标签 xi向量
2.线性模型:(w,b)
先限定一个模型(函数),这里是超平面,留待定参数,用数据确定参数
3.线性可分定义

支持向量机优化问题

最小化: ||w||2
限制条件 subject to yi(wxi+b)>=1
只要满足线性可分,那么一定可以求出w,b
二次规划(Quadratic Programming)
凸优化问题就是一个已经解决的问题,唯一极值,试探的方法

处理非线性

1)加一个正则项regulation term:原因有二:1.原来无解,加了之后就有解了
2.有解,但那个解不是我们想要的,解出来之后函数变得凹凸不平或者性质不是我们想要的
c是一个事前设定的参数
试的参数比较少,所有svm比较好
2)SVM并不是像决策树这样在低维找曲线,是通过高维映射找直线把它分开
在无限维的情况下去做区分,那么这个概率将会变成1
3) 如何选取映射?
用核函数K做优化问题,这里涉及到优化理论

优化理论 原问题与对偶问题

原问题(prime problem)
最小化 f(w)
限制条件:gi(w)<=0 (i=1-k) hi(w)=0(i=1-k)

对偶问题(dual problem)
1.拉格朗日函数定义 L(w,a,b)=f(w)+aTg(w)+bTh(w)
2.对偶问题定义:
最大化:H(a,b)=inf{L(w,a,b)}
限制条件 a>=0

定理:如果w是原问题的解,而a,b是对偶问题的解,则有f(w)>=H(a,b)

强对偶定理 KTT条件

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

this is me trying

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值