MATLAB胸部CT图像中肺部提取,轮廓跟踪技术勾画出肺部轮廓

本文介绍如何通过dicom文件读取、高斯滤波、迭代分割等步骤,利用轮廓跟踪技术在胸部CT图像中提取肺部轮廓,包括噪声过滤、二值化处理、肺质填充、气管消除及边缘提取等关键步骤,适用于医疗影像分析与计算机视觉研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

胸部CT图像中肺部提取,轮廓跟踪技术勾画出肺部轮廓

1、实验步骤
在这里插入图片描述
2、实验过程
(1)dicom文件的读取
dicom是委员会开发的用于成像设备之间进行通信的标准。使用dicomread函数读取dicom文件,并显示原始横截面胸部 HRCT 层片。
(1)上肺野层片

(2)高斯高通滤波器滤除噪声
使用高斯高通滤波器将横截面胸层片上一些高斯噪声滤去,突出层片中的高频部分,对下面的实验提供一个更好的待处理图。
在这里插入图片描述
(3)迭代分割
迭代分割是逼近思想,将通过程序不断迭代出所需要的阈值,再对图像二值化处理。将背景与人体进行分离,背景的灰度值赋值为0,人体的灰度值赋值为255。即可得到二值图。
在这里插入图片描述
(4)二值图像连通区域标记(人景分割)和图像孔洞填充
使用图像孔洞填充消除肺质中的孔洞。连通分量标记(或者称连通分量分析,连通区域标记)是图论应用中的一种算法,给二值图像中的每个连通区域标上一个特定的标号。该算法可用来对图像的目标进行定位和计数。已知每个孔洞的一个点后,我们的目的就是用前景像素填充所有孔洞。
在这里插入图片描述
(5)肺质提取
由步骤4得到的图像肺质成像较好,但是肺质并没有与人体分离,此时就需要使用填充算法,首先将上图的图片进行二值图像孔洞填充,将整个人体组织填充,再使用填充后的图像减去上图中的图像就可以将肺质单独提取出来。
在这里插入图片描述
在这里插入图片描述
(6)消除气管
由上图可看出,虽然步骤5已经将肺质提取出来了,但是由于肺部中存在气管,所以在二值化以后会看到气管依然存在在二值图中,此时如果我们想得到没有气管的单独肺质时就需要对上图进行区域消除处理,定义一个适中的面积值,计算各连通区域的面积,由于肺质的连通面积较大,此时就使用定义的面积阈值,将小于此面积阈值的部分消除。即可得到单独的肺质如下图所示。
在这里插入图片描述
(7)肺质边缘提取——sobel算子
利用sobel算子将上图肺质的边缘提取出来,方便我们观察肺质的形状。
在这里插入图片描述
(8)从高斯滤波结果中提取肺质
为了我们更加容易观察到肺部的形状、大小以及生理健康,利用以上处理结果将高斯高通滤波后的处理结果中将肺质单独提取出来。
在这里插入图片描述
ok,完成!!
本博客是给大家提供设计思路,仅供参考。不提供代码!!!
大家认真学习,自己动手,丰衣足食啦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值