近世代数——环笔记1

探讨了有限环R上的函数性质,通过举例说明如何利用不定系数法找到映射到自身环的对应多项式。进而推导出,当元素成对相等时,可以构造出唯一的多项式。应用部分则证明了若R为交换环,则R[x]不可能为域,并给出了证明过程。
摘要由CSDN通过智能技术生成

Advanced modern algebra——Ring1

Problem

If R R R is a finite ring (e.g., R R R = I m \mathbb I_m Im), then there are only finitely many functions from R R R to itself, and so there are only finitely many polynomial functions. How to realize?

Analysis

Since R R R is a finite ring, set R = { a 1 , a 2 , ⋯   , a n } ( n < ∞ ) R=\{a_1,a_2,\cdots,a_n\}(n<\infty) R={a1,a2,,an}(n<), what we want to prove is for any function f : R → R , a i ↦ a j = f ( a i ) , 1 ≤ i , j ≤ n f:R\to R, a_i\mapsto a_j=f(a_i), 1\le i,j\le n f:RR,aiaj=f(ai),1i,jn, there is a polynomial g ( x ) g(x) g(x) in R [ x ] R[x] R[x], such that g ( a i ) = f ( a i ) g(a_i)=f(a_i) g(ai)=f(ai), namely we want to the existence of correspond polynomial for each map.
Let’s take a easy example before we prove the proposition.
Consider I 3 \mathbb I_3 I3, is there a polynomial such that [ 0 ] 3 ↦ [ 2 ] 3 , [ 1 ] 3 ↦ [ 0 ] 3 , [ 2 ] 3 ↦ [ 1 ] 3 [0]_3\mapsto[2]_3,[1]_3\mapsto[0]_3,[2]_3\mapsto[1]_3 [0]3[2]3,[1]3[0]3,[2]3[1]3
It’s not so hard. Using the method of undetermined coefficients, assume g ( x ) = [ a ] 3 ⋅ x + [ b ] 3 ⋅ x 2 + [ 2 ] 3 g(x)=[a]_3\cdot x+[b]_3\cdot x^2+[2]_3 g(x)=[a]3x+[b]3x2+[2]3(since [ 0 ] 3 ↦ [ 2 ] 3 [0]_3\mapsto[2]_3 [0]3[2]3),then
{ [ a ] 3 + [ b ] 3 + [ 2 ] 3 = [ 0 ] 3 [ 2 a ] 3 + [ 4 b ] 3 + [ 2 ] 3 = [ 1 ] 3 ⇒ { a + b + 2 = 3 k 1 2 a + 4 b + 2 = 3 k 2 + 1 \left \{ \begin{array}{c} [a]_3+[b]_3+[2]_3=[0]_3 \\ \\ [2a]_3+[4b]_3+[2]_3=[1]_3 \\ \end{array} \right. \Rightarrow \left \{ \begin{array}{c} a+b+2=3k_1 \\ \\ 2a+4b+2=3k_2+1 \\ \end{array} \right. [a]3+[b]3+[2]3=[0]3[2a]3+[4b]3+[2]3=[1]3a+b+2=3k12a+4b+2=3k2+1
find a easy solution such as { a = 0 b = 1 \left \{ \begin{array}{c} a=0 \\ b=1 \\ \end{array} \right. {a=0b=1, hence a feasible polynomial is g ( x ) = x 2 + 2 g(x)=x^2+2 g(x)=x2+2.Next we start our proof for general situations.
For a 1 = b 1 , a 2 = b 2 , ⋯   , a n = b n   ( { b 1 , ⋯   , b n } ⊂ R = { a 1 , ⋯   , a n } ) a_1=b_1,a_2=b_2,\cdots,a_n=b_n~(\{b_1,\cdots,b_n\}\sub R=\{a_1,\cdots,a_n\}) a1=b1,a2=b2,,an=bn ({b1,,bn}R={a1,,an}), using the method of undetermined coefficients, assume g ( x ) = c n − 1 x n − 1 + c n − 2 x n − 2 + ⋯ + c 1 x + c 0 g(x)=c_{n-1}x^{n-1}+c_{n-2}x^{n-2}+\cdots+c_1x+c_0 g(x)=cn1xn1+cn2xn2++c1x+c0, then we have
{ c n − 1 a 1 n − 1 + c n − 2 a 1 n − 2 + ⋯ + c 1 a 1 + c 0 = b 1 c n − 1 a 2 n − 1 + c n − 2 a 2 n − 2 + ⋯ + c 1 a 2 + c 0 = b 2 … c n − 1 a n n − 1 + c n − 2 a n n − 2 + ⋯ + c 1 a n + c 0 = b n \left \{ \begin{array}{c} c_{n-1}a_1^{n-1}+c_{n-2}a_1^{n-2}+\cdots+c_1a_1+c_0=b_1\\\\ c_{n-1}a_2^{n-1}+c_{n-2}a_2^{n-2}+\cdots+c_1a_2+c_0=b_2\\ \dots\\ c_{n-1}a_n^{n-1}+c_{n-2}a_n^{n-2}+\cdots+c_1a_n+c_0=b_n \end{array} \right. cn1a1n1+cn2a1n2++c1a1+c0=b1cn1a2n1+cn2a2n2++c1a2+c0=b2cn1ann1+cn2ann2++c1an+c0=bn
the coefficient determinant is ∣ a 1 n − 1 a 1 n − 2 ⋯ a 1 c 0 a 2 n − 1 a 2 n − 2 ⋯ a 2 c 0 ⋯ ⋯ ⋯ ⋯ ⋯ a n n − 1 a n n − 2 ⋯ a n c 0 ∣ \begin{vmatrix} a_1^{n-1} & a_1^{n-2} & \cdots&a_1&c_0 \\ a_2^{n-1} & a_2^{n-2} & \cdots&a_2&c_0 \\ \cdots & \cdots & \cdots&\cdots&\cdots \\ a_n^{n-1} & a_n^{n-2} & \cdots&a_n&c_0\end{vmatrix} a1n1a2n1ann1a1n2a2n2ann2a1a2anc0c0c0, in fact, this is a Vandermonde determinant,

∣ a 1 n − 1 a 1 n − 2 ⋯ a 1 c 0 a 2 n − 1 a 2 n − 2 ⋯ a 2 c 0 ⋯ ⋯ ⋯ ⋯ ⋯ a n n − 1 a n n − 2 ⋯ a n c 0 ∣ = c 0 ∣ a 1 n − 1 a 1 n − 2 ⋯ a 1 1 a 2 n − 1 a 2 n − 2 ⋯ a 2 1 ⋯ ⋯ ⋯ ⋯ ⋯ a n n − 1 a n n − 2 ⋯ a n 1 ∣ = c 0 ∏ 1 ≤ j < i ≤ n ( a i − a j ) \begin{vmatrix} a_1^{n-1} & a_1^{n-2} & \cdots&a_1&c_0 \\ a_2^{n-1} & a_2^{n-2} & \cdots&a_2&c_0 \\ \cdots & \cdots & \cdots&\cdots&\cdots \\ a_n^{n-1} & a_n^{n-2} & \cdots&a_n&c_0\end{vmatrix}=c_0\begin{vmatrix} a_1^{n-1} & a_1^{n-2} & \cdots&a_1&1 \\ a_2^{n-1} & a_2^{n-2} & \cdots&a_2&1 \\ \cdots & \cdots & \cdots&\cdots&\cdots \\ a_n^{n-1} & a_n^{n-2} & \cdots&a_n&1\end{vmatrix}=c_0\prod_{1\le j<i\le n}(a_i-a_j) a1n1a2n1ann1a1n2a2n2ann2a1a2anc0c0c0=c0a1n1a2n1ann1a1n2a2n2ann2a1a2an111=c01j<in(aiaj)

since the elements in the collection are mutually exclusive, the value of coefficient determinant is nonzero, the equations have solution, by Cramer’s Rule. For any map, we can find its correspond polynomial.

Application

3.20 Show that if R R R is a commutative ring, then R [ x ] R[x] R[x] is never a field. Hint. If x − 1 x^{−1} x1 exists, what is its degree?

Solution: By contradiction, if R [ x ] R[x] R[x] is field, each nonzero element has its reverse, so we make a map: ϕ : R [ x ] → R [ x ] , x ↦ x − 1 \phi: R[x]\to R[x], x\mapsto x^{-1} ϕ:R[x]R[x],xx1, the discussion before hints us we can find a polynomial f : f = ϕ f:f=\phi f:f=ϕ, since f ( x ) f(x) f(x) is a polynomial, we can discuss its degree. Since f ( x ) = ϕ ( x ) = x − 1 f(x)=\phi(x)=x^{-1} f(x)=ϕ(x)=x1, we have x f ( x ) = 1 xf(x)=1 xf(x)=1. But the degree of the left side is at least 1, while the degree of the right side is 0. Contradiction!
Hence, if R R R is a commutative ring, then R [ x ] R[x] R[x] is never a field.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值